

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : PQ (13A02709) Course & Branch: B.Tech - EEE

Year & Sem: IV-B.Tech & I-Sem **Regulation:** R13

<u>UNIT –I</u> Introduction

1.	What is power quality? Why we are concern about power quality?	10M
2.	Explain about the power quality evaluation procedure.	10M
3.	Classify the different types of power quality issues.	10M
4.	a) What are the types of wave form distortion?	5M
	b) Write a short note on voltage imbalance	5M
5.	What are the power quality standards?	10M
6.	What are the responsibilities of end users and suppliers of electric power supply?	10M
7.	Draw and explain the CBEMA curve	10M
8.	Draw and explain ITI curve	10M
9.	Explain the power quality terminology	10M
10.	a) Define notching	2M
	b) What is ment by dc offset	2M
	c) Define coupling	2M
	d) What is ment by surge	2M
	e) Define flicker	2M

<u>UNIT –II</u> Transients, short duration and long duration variations

1.	Draw and explain the impulsive and oscillatory transients	10M
2.	Mention the categories and characteristics of electromagnetic phenomena in power systems	10M
3.	What are the sources of transient over voltages? Explain clearly.	10M
4.	a) Explain the long duration voltage variations.	5M
	b) Explain the short duration voltage variation.	5M
5.	What are the principles of over voltage protection? Explain with diagram.	10M
6.	Classify the principles of regulating the voltage	10M
7.	Explain in detail the role of capacitors for the voltage regulation.	10M
8.	Explain the effect of line drop compensation on the voltage profile.	10M
9.	What are the conventional devices available for the voltage regulation?	10m
10.	a) Define oscillatory transient.	2M
	b) What is the main cause for impulsive transient?	2M
	c) Define Sag?	2M
	d) What is the frequency range and duration in medium frequency transient?	2M
	e) When an interruption occurs.	2M

<u>UNIT –III</u> **Fundamentals of harmonics and applied harmonics**

1.	What is harmonic distortion? Discuss about the voltage versus current distortion.	10M
2.	a) Write the impact of voltage distortion and current distortion.	5M
	b) Explain the commonly used indices for measuring of harmonic content in the	
	waveform.	5M
3.	Explain the power system quantities under non sinusoidal condition.	10M
4.	What are the harmonics sources from commercial loads?	10M
5.	What are the harmonics sources from industrial loads?	10M
6.	Explain the brief description about the harmonic distortion evaluation.	10M
7.	Explain the principles of controlling harmonics.	10M
8.	Explain the various devices for the controlling of harmonics distortion.	10M
9.	What are effects of harmonics? Explain harmonic distortion evaluation procedure	10M
10.	a) What is ment by harmonics?	2M
	b) What is percentage of fluorescent lighting in commercial loads?	2M
	c) Define THD	2M
	d) What is the purpose of line reactor?	2M
	e) What is ment by TDD?	2M

<u>UNIT –IV</u> Power quality monitoring

1.	a) Write a short note on power quality monitoring standards.	5M
	b) Write about any one power quality measurement equipment.	5M
2.	Explain the various power quality monitoring considerations.	10M
3.	Explain about various power quality measuring equipment.	10M
4.	Explain the categories of instruments to consider for harmonic analysis.	10M
5.	Explain about smart power quality monitors.	10M
6.	Explain about the flicker meters.	10M
7.	Explain the applications for system maintenance, operation and reliability.	10M
8.	Explain about the permanent power quality monitoring equipment.	10M
9.	Explain about the power quality bench marking.	10M
10.	a) What is ment by true RMS?	2M
	b) Define multimeter	2M
	c) Why the flicker meter is need?	2M
	d) What is revenue meters?	2M
	e) What is purpose of digital fault recorders?	2M

<u>UNIT -V</u>

Power quality enhancement using custom power devices

1. 2.	What is the need for current limiter? Discuss the operation of a Solid state current limiter What are the advantages of solid state current limiters compared to conventional current	
3.	limiters? Discuss. What are the advantages of static var compensators? Discuss the operation of Static Serie	
4.	Compensators? Draw and explain the schematic diagram of a right shunt UPQC?	10M 10M
5.	How UPQC protects the load from harmonic voltages? Discuss.	10M
6.	Explain the solid transfer switch transfer with the transfer operation?	10M
7.	Explain the Solid State Breaker principle of operation?	10M
8	.Draw and explain the schematic diagram Dynamic Voltage Restorer?	10M
9.	Explain the principle of DVR operation used for sag mitigation?	10M
10.	a)Give the list of two groups custom power devices?	2M
	b)Give the complete classification of custom power devices?	2M
	c)What is Static Current Limiter?	2M
	d)What is Static Transfer Switch?	2M
	e)What is Solid State Breaker?	2M

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : PQ (13A02709) Course & Branch: B.Tech - EEE Year & Sem: IV-B.Tech & I-Sem **Regulation:** R13

<u>UNIT – I</u>

Introduction

1. A Manufacturer of load equipment may define pow that enables the equipment to work properly.	er quality has those characteristics of	f the []
A) Power supply	B) Load		
C) Miss operation2. Any power problem manifested in voltage, current	D) Frequency	in (of
customer equipment.	, of frequency deviations that result	[]
A) Failure or misoperation	B) voltage sag		
C) Voltage swells3. The current resulting from a short circuit causes the	D) frequency Completely.	[]
A) Voltage to sag	B) voltage improvement		
C) Capacitive load	D) inductive load		
4. Distorted currents fromloads also	o distort the voltage as they pa5ss thi	-	
system impedance.		L]
A) Capacitive	B) inductive		
C) Harmonic producing	D) voltage sag		
5. Sag is used as a synonym to the IEC term		[]
A) short circuit	B) dip		
C) Swell	D) voltage		
6. The term swell is introduced as an inverse to		[]
A) short circuit	B) Harmonics		
C) ANSI	D) dip		
7. A utility engineer may think of a surge as the transic	ent resulting from a lightning stroke		ch a -
is used for protection.		[]
A) surge arrester	B) Lightning phenomenon		
C) Circuit breaker	D) isolator		

8. An is a sudo	den non – power frequ	ency change in the stea	ady state cor	ndition	of
voltage, current or both that is unid				[]
A) Short circuit		B) surge			
C) Impulse transient		D)open circuit			
	onav aamnanant lagg th	. •	on from 0.2	to 50n	ac ic
9. A transient with a primary freque considered a	=	ian 3 kmz, and a duran	011 110111 0.3	[15, 15
					•
A) High frequency transientC) Medium frequency transi		B) low frequency tra D) pulse width	ansient		
10. Oscillatory transients with princ	cipal frequencies less th	han can also b	e found on tl	ne	
distribution system.				[]
A) 50Hz B) 10	0Hz C) 15	50Hz D) 30	00Hz		
11. Long-duration variations encom	npass root-mean square	e (rms) deviations at po	ower frequer	icies fo	or
longer than		_		[]
A) 1min B) 2n	nin C) 3n	nin D) 51	nin		
12. Anis an increase in the	•	,		eauenc	ev
for a duration longer than 1 min.		· · · · · · · · · · · · · · · · · · ·	1	[1
				•	•
A) Under voltage]	B) Over voltage			
C) Flicker]	D) None			
13. Anis a decrease i	n the rms ac voltage to	less than 90 percent a	t the power	freque	ncy
for a duration longer than 1 min				[]
A) Under voltage]	B) Over voltage			
C) Flicker]	D) None			
14. An occurs wh	en the supply voltage	or load current decreas	ses to less th	an 0.1	pu
for a period of time not exceeding 1	min.			[]
A) Interruption	B)sag	C)Swell	D)None		
15. Ais a decrease to b	etween 0.1 and 0.9 pu	in rms voltage or curre	ent at the po	wer	
frequency for durations from 0.5 cy	cle to 1 min			[]
A) Flicker	B) Harmonics	C) Swell	D) Sag		
16. Ais defined as an	increase to between 1.	1 and 1.8 pu in rms vo	ltage or curr	ent at t	:he
power frequency for durations from	0.5 cycle to 1 min.			[]
A) Flicker	B) Harmonics	C) Swell	D) Sag		
17defined as the	e maximum deviation	from the average of th	e three phas	e volta	ges
or currents, divided by the average	of the three phase volta	ages or currents, divide	ed by the ave	erage o	f
the three phase voltages or currents.				[]
A) Waveform distortion		B) Voltage unbalance	.		
C) Noise		D) Notching	•		
C) 11015C		2) 110toming			

18is d	•		-	ower	
frequency principally chara	acterized by the spec	ctral content of the devia	tion.	[]
A) Waveform disto	rtion	B) Voltage	ınbalance		
C) Noise		D) Notchi			
19. Voltages or currents ha which the supply system is				he frequ	ency at
which the supply system is	designed to operate	e are caried		L	J
A) Harmonics	*	2) Inter harmonics D)	A 11		
20. Voltage sag is caused b	oy .	D) Lood war	:a4:ama	[]
A) System faults		B) Load var	iations		
C) Starting of large		D) A & B			
21. Unwanted electric sign	al with broad band i	is		[]
A) Notching	B) DC offset C	C) Noise D) I	Harmonics		
22. The presence of DC in	AC system is			[]
A) Notching B) Γ	OC offset C)	Noise D) Harmonics			
23. Voltage fluctuations is		·		[]
A) sag B)Sw 24. The duration of voltage	*	licker D)Noise		[1
A) 0.25cycle -0.5m	-	B) 0.5cycle	e-1min	L	J
		•			
C) 1 cycle-1 min 25. The duration of voltage	e swell is	D) None		[]
23. The duration of voltage	SWCII IS			L	J
A) 0.25cycle -0.5m	in	B) 0.5cycl	e-1 min		
C) 1 cycle-1 min 26. Waveform distortion is		D) None		г	1
A) Frequency varia		B) Steady	state deviation	[]
		•			
C) A&B		D) None			
27. Endures are better info	rmed about			[]
A) Sags	B) Transients	C)A&B	D)None		
28. The ultimate reason that		· ·	,	[]
A) Technical value		B) Econon	nio voluo		
C) A&B		D) None	ne value		
29. Voltage fluctuations is	also called as	,		[]
A) Flicker	B) Surge	C) Frequency vari	ation D) None		
30. CBEMA curve is repla		c) i requercy vari	ution D) None	[1
A) ITI	B) IIT	C) CMT	D) None		,

	QUESTION BANK	2016	
31. Interruptions occur due to	[]	
A) Power system faults C)Control mal function D)All		-	1
32. Loads can exhibit continues rapid variations in load current magnitude	le results of	-]
A) Flicker B)Sag C)Swell D)None 33. The portion of CBEMA curve is adapted from	I	-]
A) IEEE B)IEC C)ICC D)IOC			
34. Ratio between the peak value and RMS value of a periodic waveform A) Coupling B)Crest factor C)Distortion D)Deviation]
35. large current that load draws when initially turned on is A)Impulse B)Crest factor C)Coupling D) inrush	J	-]
36. Power quality isquality A)Voltage quality B)Current qu	ıality]
C)Frequency quality D)All			
37. ITI curve is applicable for A)120Volts B)160Volts C)180 Volts D)100Volts	I	-]
38. A loss of equipment operation due to noise ,sag or interruption A) Dropout B)Dip C)Distortion D)Fault	J]
39. Fault generally refers to aon the power system A)Open circuit B)Shot circuit	ıit	-]
C)A&B D)Flicker			
40. The systematic variations of the voltage envelop is called A) Fluctuations B) Deviations	S	[]
C)Distortions D)Frequency	variations		

<u>UNIT –II</u> Transients, short duration and long duration variations

1 are used to prosupports the voltage on the s	_	ower to correct	the power factor,	which reduces	s losses [and]
A).circuit breakers	B).fuses	C) capacitors	D) surge arreste	rs		
2. Newer high – energy MO	V arresters for	low voltage ap	plications can with	stand	[]
A) 2 to 4 kJ 3. The initial transient frequency the front of the waveform.	B) 400kJ ency is above 1	•	D) 600kJ bears as a small am	ount of	<u>[</u>	on
A) hash 4. The main function of surg between two points in the cir		C)dash TVSS is to lim	D)crash it the	that car	n appea	r]
A) Power	B) voltage	c C) current	D) frequency			
5 are r transients.	normally open o	levices that cor	nduct current durin	g over volta	age []
A) bar-bar B) vo 6. An isolation transformer	·	row bar D)s			[]
A) High frequency C) Normal current 7combines t	wo surge suppr	D) hig	nsients stability gh frequency noise w pass filter to pro			ion.
A) Normal protector		B).hy	brid protector			
C) Liquid protector		D) lii	ne projector			
8 c	an reduce the c	apacitor switch	ing transients.		[]
A) Linear resistorsC) Pre-insertion resis9. Popular strategy for reduce		D) Ti	arbon resistors ransistors itching is to use a			
	8	r	<i>6</i>		[]
A) Closing breakerC) Synchronous clos10. The transformer would h	· ·	D) lin	cuit breaker e sectionalizes ly 20 to 25 percent	of resistive ed	quivale	nt
load to limit Ferro resonance			•		[]
A) 10	B) 20	C) 12	5	D) 225		

11. Utilities generally to the	ry to maintain the s	service vo	oltage supplied t	to an end user wi	thin []
A) +/_ 2 percen	t of nominal		B) +/ 3 Pero	cent of nominal		
C) +/_ 4 percent				ent of nominal		
12. The approach to fli	cker causing loads	is to app			led	
••	Č	**		•	[]
A) Static var com	•		B) dynamic co	ompensators		
C) Series capacite			D) none			
13. Utility line voltage	regulators and subs	station L'	TCS are relative	ely	[]
A) medium	B)high		C)A&B	D)slo	w	
14. Electronic tap switc	, •	ı also be	,	·	[]
-			_			-
A) current	B)voltage		C)power	D)ener	0	1
15. Magnetic synthesize	ers although intend	ed for sh	ort duration vol	tage	[]
A) swell	B)sags		C)A&B	D)free	quency	
16.Motor generator set	s are also used for				[]
A) voltage cog	D)voltogo	avvol1	C)voltaga nag	mulation D)age	mnonsotion	
A) voltage sag 17.The line drop compe	B)voltage		C)voltage reg	guiation D)coi	mpensation	
A)R&V	B)V&I	Carleu	C)P&V	D)R&	} X]
A)K& V	D) V & I		C)I & V	D)Ko	CA	
18.Capacitors may be	used for voltage re	gulation	on the power sy	stem in	[]
A)Shunt configu	uration	B)se	ries configurati	on		
C)Shunt or serie	es configuration	D)A	,B,&C			
19.Series capacitors ca	nnot tolerate				[]
A)fault current	B)fault voltage	C)faul	t impedance	D)A&B		
20.Capacitor switching	is source of				[]
A)transient	B)noise	C)dist	ortion	D)flicker		
21.Lightning is main se	· · · · · · · · · · · · · · · · · · ·	C)aist		D)IIIeilei	[]
					L	,
A)oscillatory tr	ansient		B)impulsive to	ransient		
B)harmonics	,		D)all		r	1
22.clamping are used in	1 circuits				[J
A)A	B)DC	C)A,I	3	D)none		
23.Impulsive transients	are presents in onl	y	-directions		[]
A)positive or ne	egative B)pc	sitive	C)negative	D)all		

		QUES	TION BANK	2016
24.Ballast islimiting dev	vice in lightning ap	pplications]	1
A)voltage	B)impedance C	C)current D)	none	
25.Capacitor switching is one of the A)transient over volu		C)interruptions	D)none]
26.High energy transients are first h	andled by		[]
A)low-pass filter	B) gap-type pro	etector C)both	D)none	
27.power conditioners are similar to)		[]
A)Low-pass filters C)TVSS		B)isolation T/F D)none		
28. The inductor in the low pass filter	er bloks the		[]
A)High freq transients		B)low freq transic	ents	
C)both		D)none		
29. Transients is also called as			[]
A) Interruption B) Sur	rge C) Voltage-variation	D) None	
30. Short duration voltage variation]]		
A)Loose connection B) Sw	itching C) Load variation	D) None	
31. The Voltage drops too low under	er _ load		[]
A) Heavy B) Lig	ght C) Both	D) None	
32. Which is example of isolation d	evice		[]
a) Ups s/m B) Fer	ro resonant t/f C) Motor Generator set	D) All	
33. Which one is more efficient in V	Voltage regulation	device	[]
A) FerroresonantC) Magnetic synthesizer		B) Electronic tap D) none	switching solu	itions
34. The drawback of motor – gener	rator set is		[]
A) Response time is large		B) Losses are hig	gh	
C) both		D) None		
35. In series capacitors, Voltage rise	e is zero at		[]
A) No load B) ful	l load C) both	D) None	
POWER QUALITY				Page 12

			QUESTION BANK	2016
36. In shunt capacitor, 9	% voltage rise is indep	pendent of	[]
A) load	B) supply	C) both	D) None	
37. In series capacitor,	he S/M losses are	than shut capacitor]]
A) more	B) less	C) equal	D) none	
38. in cyclic Flicker is a	result of Voltage	e fluctuation	[]
A) Periodic	B) Non periodic	C) Occasional	D) Non occasi	ional
39. Zig – Zag transform	ers act like a filter to	the zero sequence curre	nt by offering []
A) high impedan	ce path to neutral I	3) Low impedance path	to neutral	
C) Any of the al	oove I	O) None		
40. Notch filters can pro	vide to harmonic	suppression]]
A) power factor		B) voltage		
C) Reactive pow	er	D) Active power		

<u>UNIT –III</u> **Fundamentals of harmonics and applied harmonics**

1	is the average rate of delivery of energy.]		
	A)active power				_		
2	is a ra	tio of useful power to	perform real wo	ork to the	power supp	lied by	a
utility						[]
	A)active power	B)reactive power	C)power factor	or	D)apparent	power	
3	become a	n important issue for	grounded wwe sv	etame wi	th current fl	owing o	n tha
neutra		ii iiiportaiit issue ioi į	grounded wye sy	stems wi	ili cullelli li	г	- 1
neuna	и.					L	J
	A)fourth harmonics		B) Triple har	monics			
	C)fifth harmonics		D) seventh har	monics			
4	is a me	easure of the effective	value of the harr	nonic coi	mponents of	a disto	rted
wavef	orm.					[]
	A) fifth hammania		D)twinlen beams				
	A)fifth harmonic	tautian	B)triplen harm D) seventh har				
5 1 1	C)total harmonic dis				ha	, manania	aantan
	listinctive characteristic	of switch mode pow	er supplies is a ve	ery mgn -	Ila	_	
III tile	current.					[]
	A) fifth	B)seventh	C)third]	D) ninth		
6	are inc	luced currents in a tra	nsformer caused	by the m	agnetic flux	es.	
				-		[]
	A > 1		D) 11	. 1			
	A)hysteresis losses		B)eddy curren	it iosses			
	C) friction losses		D)stay losses				
7. Har	monic voltage distortion	on at the motor termin	als is translated	into			
within	the mot					[]
	A) - 11 1	_	D)II :				
	A)eddy current losses	5	B)Harmonic fl	uxes			
	C) Power		D) stay losses				
8. The	e typical range of frequ	encies for induction f	furnaces is			[]
	A) 150 / 1000 LT	D) 150 / 1000 H	C) 1011	D) 2000			
0	A) 150 to 1200 kHz	•	C)10Hz	D) 3000	HZ	r	1
9	is the only step rec	juired for ac arives.				[]
	A) Rectification		B). inverter				
	C) cyclo converters		D) cyclo inve	erters			
10. A	frequency that is an int	eger multiple of the f			alled	[]
	•	•	•	·		-	-
	A) harmonic frequen	ey B) switching	C) transient	D)	voltage		

			QUESTION BANK	201	6
11. Crest factor for sinuso	idal wave is			[]
A) 1.123	B) 1.232	C) 1.343	D) 1.414		
12. The Voltage distortio	n on transmission system	n is less than%		[]
A) 5%	B)10%	C) 1%	D) 15%		
13. Voltage distortion de	pends on the current&			[]
A)Voltage	B)current	C) Frequency	D) Impedance		
14. Most common type of	passive filter is			[]
A) Single tuned fi	lter B) double tuned filte	er C) high pass filter	D) none		
15. The current drawn by	the ferroresonant transfe	ormer increases from	n	[]
A) 0.5-2 A	B) 0.3-1 A	C) 0.2 -2 A	D) 0.4 -2 A		
16. The devices for control	olling harmonic distortio	ns are		[]
A) Line reactor	B) capacitor banks	C) zigzag t/f's	D) All the abov	e	
17 is practical	lly effective method for	the PWM type drive	es	[]
A) zigzag t/f's	B) Line react	tor C) filter	D) none		
18. Some impulse load lil	ke rock crushers and tire	testers use		[]
A) Shunt capaciton	rs B) shunt reac	etors C) series r	reactors D) series	s capac	itors
19. Which of the followin	g device is a static var co	ompensator		[]
A) TCR	B) TSC	C) SSSC	D) A an	d B	
20. In electronic tap-swite	ching regulators	are used		[]
A) SCR's	B) triacs	C) A or B	B D) None	2	
21. Static Var compensate	ors can regulate the volta	ige by		[]
A) Supply reactive	e power B) consumes	reactive power C) a	a or b D) none		
22. Due to the series capa	citors the voltage rise at	no-load is	···	[]
A) Minimum	B) zero	C) maxim	um D) none		
23. The percentage voltage	ge rise at the capacitor is	maximum at		[]
A) full-load	B) light-load	c) no-load	d D) all		

				QUESTIC	ON BANK	2016	
24 Cannot provide reacti	ve power to the	feeder l	load			[]
A) Shunt capacitors	B) shunt reacto	ors	C) series	s capacitors	D) None		
25. A typical 3% input choke can b	be reducing the h	armoni	ic distorti	on		[]
A) 80-40%	B) 40-20%		C) 10-59	%	D) 50-40	%	
26. The devices for controlling har	monic distortion	s are				[]
A) Line reactor	B) capacitor ba	anks	C) zigza	g t/f's	D) All the	e above	
27. Harmonic control options consi	st of controlling	the har	monic inj	ection from		[]
A) Linear loads C) Harmonic filters 28. The total demand distortion is e	expressed in term	s of the	D) any	near loads of the above		[]
A) Average demand C) demand factor 29.The short circuit ratio used to de	etermine the limit	ts on	•	mum demand ation factor	i	[]
A) Harmonic study 30. The source of harmonic current	B) P C C s is too	C) T	DD	D) harmonio	c currents	[]
A) Low 31. Transformer connections can be	B) medium e employed to rec	C) gr duce ha		D) transien urrents in	ts	[]
A) 3 phase systems		B)1 p	phase syst	ems			
C)2 phase systems 32. Harmonic problems on distribute	tion feeders ofter	,	y of the a	bove		[]
A) Light load 33. Which devices available to com	B)half load trol harmonic dis	· ·	ull load	D)one for	ırth load	[]
A)a capacitor bank 34. The product of RMS voltage an A) Active power 35. Power system freq is directly re	B) Reactive po	d			e above D) None	[]
A) Power factor	B) Speed	C) Both		D) None	-	-
36 Power system freq is directly rel A) Power factor	•) Both		D) None	[]
37. Notch filters can provide to	harmonic suppr	ession				[]
A) power factor	B) voltage	C) Reactive	e power			
38. Capacitor voltage filers have _	on its output					[]
POWER OHALITY						Dog	ıe 16

C) 1.5

D) 1.44

B) 1.11

A) 0.707

UNIT -IV Power quality monitoring

1. Power quality monitoring programs are often dr	iven by the demand for	improving th	e systen [n wide]
A)power quality performance C) current quality performance 2. The methods for characterizing yhe quality of ac	B) voltage quality per D)None c power are important f		[]
A)power disturbanceC) monitoring requirements	B) voltage di D) rms variations	sturbance		
3. Infracted meters can be very valuable in detecti	ing loose connection an	d	[]
A)insulators	B)semiconductors			
C)overheating conductors 4. Electrostatic discharge(E S D)can be an importa-	D) A&B ant cause of power qual	ity problems i	n some t	ype of
A)Electrical equipment C) Electrical &Electronic equipment 5. The rms value of a signal is a measure of the heat across a	B)Electronic equipm D)none ating that will result if t		npresseo [d]
A)Inductive load B)capacitive load 6.Instruments in the disturbance analyser category	C) resistive load have very limited	D)none	[]
A)Harmonic study C) Harmonic analysis capabilities 7.A simple portable meter for harmonic analysis is	B) Harmonic injecti D)any of the above	on	[]
A)practical B)ideal 8.Historically flicker has been measured using rms	C)A&B meters , load duty cycl	D)medium e, and a	[]
A)Flicker curve B) T H D	C)Load duty cycle	D)Measuring	flicker	
9.Monitoring of power quality on power systems o	ften requires transduce	ers to obtain ac	ceptable [;]
A)V & I signal levels C)E & I signal levels 10.Frequency response is particularly important for	B)V & P signal levels D)A&B r transient and harmoni	С	[]
A)Distortion monitoring B)Signal levels	C) FTP	D)UCAMMS	5	

	Theice quality.	project defined sever	al performance in	ndices for evaluatin	g the electr	-
SCI V	ice quanty.				L	J
10	A)EPRI RBM	B) RVM	C).R		D)RRM	
12.		stem and characterization				
	System.	stem and characterization	on of the periorin	lance of the	[]
	A) Collect RVM o	lata	B) Collect R	BX data		
	C)Collect power of		D) collect R			
		could be based on p a standard established b	-	-	[]
	A)select EPRI RB	M	B) select the	benchmark		
	C)Select RVM		D) RRM			
1.4	WDD 6. 1 11150	1005 1 6				
		-1995 defines a sustain n percent of nomi	-		Г	1
111	· ·	•		niger than I illin.	L	J
	A) 20	B) 30	C) 40	D) 10		
15. 4	A i	s the maximum sum of	sag score values	allowable for a gro	oup of locat	ions
befo	re compensation.				[]
	A) sag score targe	ts	B) interrup	otions targets		
	C) sag wind target	ts	D) none o	of the above		
		e average per unit volta	ige lost by each	of the three phase v	oltages for	the
lowe	est qualifying.				[]
	A)sag score	B) interruptions	C)sag wind	D) dip ice	e	
		d on the mean value of		of voltage THD mea	surements	
reco	rded for each circuit	segment rather than the	CP95 value.		Ĺ]
	*	B)SATHD	C)SATSS	·	_	
18.	Γhe	are designed	to assess the ser	vice quality for a sp	ecified circ	cuit area
					L	J
	A) rms variation	indices	B)maximu	m voltage indices		
	C) Average volta		D) voltage		_	
19	to ser	ve as metrics for quanti	fying quality of	service.	[]
	A) EPRI RBM	B) RVM	C)RGM	D)ROC	3	
	_	e CP95 value of a weig	hted distribution	of the individual ci	ircuit segm	_
CP9	5 values of voltage				Ĺ]
	A) SDD	B)TDD	C) THD	D)TDI	Os	

21.Digital monitoring	g instruments incorpora	ate the use of			[]
A)A to D 22.The frequency res	B)D to A ponse of a standard me	C)Both etering classe	D)Nos V T depends o		_ []
A)Voltage 23.Some substations	B)Current use capacitively couple	/ 31		ype burden	_ []
A)Voltage reg C)Frequency	gulation g class C Ts are genera	illy adequate	B)Voltage to D)All		[]
A)5KHz	B)3KHz ubstation C Ts and V 7	C)2KHz	D)10	KHz	[]
A)PQ mainte C)PQ Consid 26.For monitoring pr		D)N		unloaded	[]
A)distribution C)Fault recor 27.There are two stre		D).			[]
·	B)Line analysis I format for interchang	*	D)N ality data		[]
	B)PQ DEF which includes statistic		D)I of maximum vol	-	nt duratio	on and
	B)Transient frequence	•	ower	D)Curren]
A) one	is structure into Le B) Two	evels	C) Three	D)	[Five]
31% of RMS v	ariator are no rectangul	lar			[]
A) 20	B) 10	C) 3	0	D) 60		
32. RMS variations	is structure into Le	evels			[]
A) one	B) Two		C) Three	D)) Five	
33. SAR $Fl_x =$					[]

			QUESTION BANK	2016
a) $\Sigma N_i/N_t$	B) $\Sigma N_i - 1/N_t$	c) $\Sigma N_i + 1/N_t$	D) $\Sigma N_i + 1/N_{t-1}$	
34. SARFI is us to define			[]
A) Threshold as a c	eurve		B) threshold as a valve	
C) Both A and B		D) No	one	
35. IEEE – 519 is the stan	dard for		[]
A) Voltage harmon	nies B) Cur	rent harmonies C) sp	ikes D) sags	
36. Voltage magnitude and	d transient magnit	aude can be measures	by []
A) Spectrum Analy	7ze	В) На	armonic Analyze	
C) Disturbance Ana	alyze		D) RMS meter	
37. Determine target perfo	rmance levels are	targets that are appro	priate ane economically a	nd
				[]
A)Feasible B)Unfeasible C)C	onsiderable D)No	one	
38.According to Detloff an		•		_
the Detroit Edison power of	uality monitoring	system fall below	[]
A)20,0.75PU	B)10,0.7PU	C)25,0.6PU	D)15,0.9PU	
39. An insurance scheme is	s considered	-if the expected cost	of claims equals	
the premiums paid.			1]
A) fair	B) unfair	C)feasible	D)none	
40. in RMS variations agree with in the control of the u		ance efforts to	the number of fault	
A)Increase	B)Reduce	C)Constant	D)All	

<u>UNIT -V</u> Power quality enhancement using custom power devices

1.The concept of custon	n power was intro	oduced			[]
A) N. G. Hingo	orani B) I	David.N	C) Nelson.F	D) No	ne	
2. A unified power qual	ity conditioner (U	JPQC) is a con	nbination of		[]
A) series	B) shunt	C) series and	l shunt	D) None		
3. The network reconfig A) series switch		•	ed ries and shunt sw	itchgear D	[)None]
4. The energy exchange through A) Inductor	between the seri B)Resistor	es and the shur C) dc ca		QC takes place D)None	[]
,	,	•	•	Dinone	r	1
5. The compensating cu	-				[]
A) active filteri	ing B) load	balancing	C) power factor	improvement	D)All	
6.Which of the followin	g are compensati	ng custom pov	er devices		[]
A) UPQC	B) Solid State	e Breaker	C) Static Curr	rent Limiter D)	None	
7. Which of the following	g are Network re	configuring ty	e custom power	devices	[]
A) UPQC	B) Solid State	Breaker	C) DVR D)No	ne		
8. Network reconfiguring inserting series induc		ower devices th	at reduces fault c	urrent level by	[]
A) UPQC	B) Solid State	Breaker	C) DVR D) St	atic Current Lir	niter	
9. Which of the followin	g is a high- speed	d switching dev	vice		[]
A) GTO	B) MOSFET	C)BJT 1	O) Static Current	Limiter		
10.Which of the following	ng is a high-spee	d switching po	wer electronic co	ntrolling device	[]
A) UPQC	B) Solid State	Breaker	C) DVR D) St	atic Current Lir	niter	
11. Dynamic Voltage R	estorer is also cal	lled as			[]
A) series-shunt	compensator B)	shunt compen	sator C) static se	ries compensato	or D)No	one
12.Which of the followi	ng devices is call	led as series vo	ltage booster		[]
A) UPQC	B) Solid State	Transfer Switc	h C) DVR	D) N	lone	

13. The number of GTO switches depends in a Static Current Limiter [A) rated peak power B) rated peak voltage C) rated peak current D) None]
14. When a deep voltage sag or interruption is detected in this feeder, the load is quickly	
transferred to the alternate feeder. This switching action is called]
A) make-before-break B) make-after-break C) make-small-break D) None	
15. The primary objective of a transfer switch is to protect a sensitive load from]
A) voltage sag/swell B) voltage interruption C) power interruption D) None	
16. Which of the following are not compensating custom power devices]
A) UPQC B) Solid State Breaker C) DVR D)None	
17. Which of the following are not Network reconfiguring type custom power devices []
A) UPQC B) Solid State Breaker C) Static Current Limiter D)None	
18. A solid state breaker can offer the following advantages []
A) limited fault current B) reduced switching surges C) power quality D)None	
19. The most efficient and modern custom power device used in power distribution	
Networks []
A) UPQC B) Solid State Breaker C) DVR D)None	
20. DVR is a series connected custom power device, designed to inject a dynamically]
controlled	
A) voltage B) current C)power D)None	
21. DVR consists of an energy storage device, a boost converter (dc to dc), voltage source[]
inverter, ac filter and coupling transformer, connected in	
A) parallel B) series C)series-parallel D)None	
22.DVR is a connected device]
A) shunt B) series C) combined series and shunt none D) none 23. Which of the following controller injects voltage in series with the line [
23. Which of the following controller injects voltage in series with the line]
A) Series B) Shunt C) Series-Shunt D)None]
]
A) Series B) Shunt C) Series-Shunt D)None	
A) Series B) Shunt C) Series-Shunt D)None 24. Which of the following controller injects current in to the system	
A) Series B) Shunt C) Series-Shunt D)None 24. Which of the following controller injects current in to the system A) Series B) Series-Series C) Series-Shunt D) Shunt]
A) Series B) Shunt C) Series-Shunt D)None 24. Which of the following controller injects current in to the system A) Series B) Series-Series C) Series-Shunt D) Shunt 25. Which of the following controller provides more effective voltage control]
A) Series B) Shunt C) Series-Shunt D)None 24. Which of the following controller injects current in to the system A) Series B) Series-Series C) Series-Shunt D) Shunt 25. Which of the following controller provides more effective voltage control A) Series B) Shunt C) Series-Series D)None]

A) Shunt B) Series	C) Series-Series	D)N	one		
28. Which of the following ar	e sag mitigation devices	S		[]
A)DVR B)SST	S C) Active series	compensators	D)All of the	above	
29.SSCL consists of a pair of	opposite poled switches	s in parallel with t	he current limitin	ıg []
-	B) Capacitor Cm	•	D)none	0 -	-
30.The current limiter is conn	-	•	restrict the curre	ent in ca	se of
fault down stream				[]
A) shunt B) serie	es C) combined	D) none		_	_
31.In SSCL during healthy sta	ate condition the opposi	te poled switch re	mains—	[1
A)opened B) clos		D)none		-	-
32. The SSTS is also called as	·	,		[]
A)STS B)TCR	C) TSR	D) none		-	-
33. The worlds first DVR was	·	,		[]
A)1995 B) 199	•	D) 2005		-	-
34.The UPQC connected in	different ways	,		[]
A) 2 B)3	C) 4	D)5		-	_
35. Which company installed	an indoor 15kv, 600A s	tatic transfer switc	h at industrial		
park in Columbus				[]
A) American electric	power B) Ediso	on company			
C) texas company	D)none				
36. UPQC is a combination of	of			[1
A) SSSC,STATCOM	B) TCF	R,TSR			
B)TCSC,TSSS	D) TCS	SC,SSSC			
37. STATCOM generates/absor	bs the			[]
	G) D 4 (1) 0 (B) B) 11			
A)Real power B) Real	acive powe C) Both (A)&(B) D)No	one		
38. Which of the following devi	ce is more preferable for l	FACTS technology		[]
A)CSC B)V	SC C)Bot	h(A)&(B)	D)None		
39. Which of the following devi	ce is more preferable for	storage in FACTS t	echnology	[]
A) Capacitors B)Inc	ductors C)Batt	teries D)Super	conducting magne	ets	
40. The effective transmission in	npedance X_{eff} with the ser	ries capacitive comm	ensation	[]
	•			•	1
A) $X-Xc$ B) $X+X$	Cc	C) X/Xc	D) None		

	QUESTION BANK 2016
POWER QUALITY	Page 2