QUESTION BANK	2016
---------------	------

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Digital Signal Processing(13A04602)	Course & Branch: B.Tech - EEE
Year & Sem: IV-B.Tech & I-Sem	Regulation: R13

UNIT 1

INTRODUCION

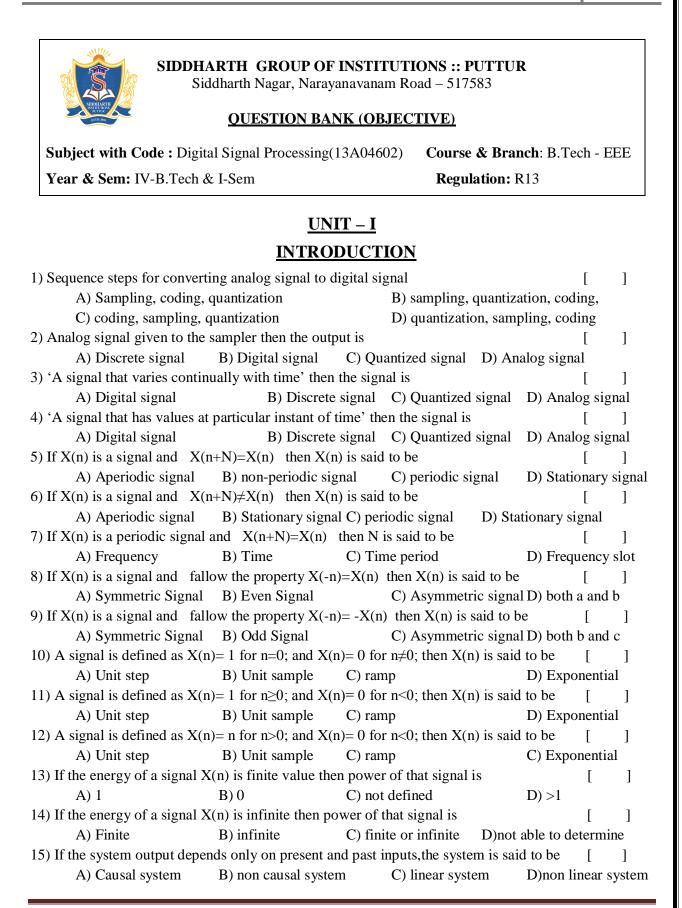
 2) a) Determine if the following systems are time variant or time invariant. i) y(n)= x(n)+x(n-1) ii) y(n)=x(-n) b) Determine if the system described by the following equation are causal or non-causal i) y(n)= x(n)+(1/x(n-1)) ii) y(n)=x(n²) 3) a) Describe the linear time invariant system. b) Explain the properties of LTI system.
 b) Determine if the system described by the following equation are causal or non-causal 5M i) y(n)= x(n)+(1/x(n-1)) ii)y(n)=x(n²) 3) a) Describe the linear time invariant system. 5M b) Explain the properties of LTI system. 5M
i) $y(n)=x(n)+(1/x(n-1))$ 3) a) Describe the linear time invariant system. b) Explain the properties of LTI system. 5M
3) a) Describe the linear time invariant system.5Mb) Explain the properties of LTI system.5M
b) Explain the properties of LTI system. 5M
4) Consider causal and stable LTI system whose I/Ps and O/Ps are related through second order
difference equation $y(n)-(1/6) y(n-1)-(1/6)y(n-2)=x(n)$ then determine system impulse response $h(n)$
for the system. 10M
5) Find the solution of 2^{nd} order difference equation $y(n)=(5/6) y(n-1)-(1/6)y(n-2)+x(n)$, for the input sequence $x(n)=2^n U(n)$ 10M
6) Explain the properties of Discrete Fourier Transform in detail. 10M
7) Explain frequency domine representation of signals and systems in detail 10M
8) Describe the relation between 10M
a) DFT to Z- transform b) DFT to Fourier Series c) DFT to Laplace transform
9) a) Justify DFT can use as a linear Transform. 5M
b) How do you sample and reconstruct a discrete time signal in Frequency domine. 5M
10) a) what is energy of a signal. $5X2=10M$
b) what are the differences between time variant and time invariant systems.
c) what are the differences between causal and non-causal systems.
d) What are the multichannel and multi-dimensional signals?
e) what are the differences between DFT and DTFT.

QUESTION BANK	K 2016
UNIT-II	
<u>Fast Fourier Transform Algorithm</u>	1014
1) Compute 8-poin DFT of the sequence $x(n) = \{1,1,1,1,1,1,0,0\}$	10M
 2)a) Explain about liner convolution of sequence. b) G = (1, 2, 2, 1) = (1, 2, 2, 1) = (1, 2, 1, 1) 	5M
b) Compute linear convolution of sequence $x(n) = \{1,2,3,1\}$ and $h(n) = \{1,2,1,-1\}$	5M
3) Explain about decimation in time FFT algorithm.	10M
4) Explain about decimation in frequency FFT algorithm.	10M
5) Compute DFT of the sequence $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$ using DITFFT algorithm.	10M
6) Compute DFT of the sequence $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$ using DIFFFT algorithm.	10M
7) Compute IDFT of the sequence $x(n) = \{7, -0.707, -j0.707, -j0.707, -j0.707, 1, 0.707, +j0.707, -j0.707, -j0$	•
-0.707+j0.707}	10M
8) Compute IDFT of the sequence $x(n) = \{7, -0.707, -j, 0.707, -j$	7,j,
-0.707+j0.707}	10M
9) How do you compute DFT using	10 M
a) The Goertzel Algorithm b)The chrip-z Transform	
10) a) what is twiddle factor	5X2=10M
b) Draw the butterfly diagram for DITFFT algorithm	
c) Draw the butterfly diagram for DIFFFT algorithm	
d) what are the applications of FFT algorithm	
e) what is the bit reversal order of 16 point sequence.	
<u>UNIT-III</u>	
Implementation of Discrete-Time Systems	
1. (a) Discuss the realization of FIR filter structures.	5M
(b) Realize FIR filter with system function in cascade form	5M
H(z) = 1 + (5/2) z - 1 + 2z - 2 + 2z - 3.	
2. Consider the system $y(n) = y(n - 1) + 2y(n - 2) + x(n)$	
(a) Find H(z) .(b) Realise using direct form-II	5M 5M
3. Realise the discrete system $y(n) = -0.1y(n-1)+0.2y(n-2)+3x(n)+3.6x(n-1)+0.6x(n-2)$	
using.(a) Cascade forms (b) Parallel forms.	5M 5M
4. Consider the discrete system : $y(n)=2y(n-1)+2y(n-2)+x(n)+x(n-1)$.	
Name of the Subject DIGITAL SIGNAL PROCESSING	Page

QUESTIO	N BANK 2016
(a) Find the Z-transform	5M
(b) Realize the system using direct form-I method.	5M
5. (a) Explain the advantages and disadvantages of Direct form-II realization over Direct form-I.(b) Realize following system with difference equation in cascade form	5M
y(n) = y(n) = y(n - 1) + 2y(n - 2) + x(n)	5M
6. What is the principle of designing FIR filters using windows?	
7. Realize system with following difference equation	
y(n) = (3/4) y(n-1) - (1/8) y(n-2) + x(n) + (1/3)x(n-1) a)direct form-I	5M
b)direct form-II	5M
8. Realize system with following difference equation	
y(n) = (3/4) y(n-1) - (1/8) y(n-2) + x(n) + (1/3)x(n-1).	514
a)cascade form b)parallel form	5M 5M
9.Expalin briefly about different structures in FIR systems	10M
10.Explain briefly about the following IIR structures	
a) a)direct form-I	2M
b)direct form-II	2M
c)cascade form	2M
d)parallel form	2M
e)lattice structure form	2M
<u>UNIT –IV</u>	
Design of Digital Filters	
1. (a) Explain the FIR filter design using windowing technique.	5M

(b) Compare FIR and IIR filters.	5M 5M
2. (a) Explain the features of Chebyshev approximation.(b) Discuss the location of poles for Chebyshev filter.	5M 5M
 3. (a) Discuss the characterization of IIR filter. (b) Using backward difference method obtain H (z) for following H (s) = 1/(s + 3). 	5M 5M
4. (a) Compare features of different windowing functions.(b) Justify that FIR filter is linear phase filter.	5M 5M

QUESTION BANK	2016
5. Describe the IIR filter design approximation using Bilinear Transformation method. Also sketch the s-plane to z-plane mapping. State its merits and demerits.	10M
6. Convert the following analog filter transfer function using backward difference method, Impulse invariant method and Bilinear Transformation method. H(s)=1/(s+0.2) Consider T= 1 Sec	10M
7. Give the expression for rectangular window function. Find its frequency response and also sketch its spectrum. Also discuss its features.	10 M
8. (a) Discuss about characteristics linear phase FIR filters.(b) What are the effects of windowing.	5M 5M
9. Design an analog Butterworth filter that has a -2db pass band attenuation at a frequency of 20 rad/sec and at least -10dB stop band attenuation at 30 rad/sec (assume $\Omega c = 21.3868$ rad/sec)	10M
 10.Compare a)rectangular window and Hanning window b) rectangular window and Hamming window c) Hamming window and Hanning window d) Hamming window and Blackman window e) Hamming window and Kaiser window 	2M 2M 2M 2M 2M


<u>UNIT – V</u>

Multirate Digital signal processing

(b) What is need for up sampling and down sampling? 3N			3M
(c) Find the Z- transform of $a^n u(-n - 1)$ with a down sampling by a factor `2'. Comment on 4N	a) What is need for up sampling and down sampling?	(c) Find the Z- transform of $a^n u(-n - 1)$ with a down sampling by a factor $2'$. Comment on	4M
ROC in comparison with original ROC i.e. $a^n u(-n-1)$ ROC.			
5. With the help of block diagram explain the sampling rate conversion by a 10	c) Find the Z- transform of $a^n u(-n - 1)$ with a down sampling by a factor $2'$. Comment on 4M	5. With the help of block diagram explain the sampling rate conversion by a rational factor \I/D'. Obtain necessary expressions.	10 M
	c) Find the Z- transform of $a^n u(-n - 1)$ with a down sampling by a factor `2'.Comment on 4M ROC in comparison with original ROC i.e. $a^n u(-n-1)$ ROC. With the help of block diagram explain the sampling rate conversion by a 10M	rational factor 1/D. Obtain necessary expressions.	
rational factor `I/D'. Obtain necessary expressions.	c) Find the Z- transform of $a^n u(-n - 1)$ with a down sampling by a factor `2'.Comment on 4M ROC in comparison with original ROC i.e. $a^n u(-n-1)$ ROC. With the help of block diagram explain the sampling rate conversion by a 10M	6. Describe the decimation process with a factor of `M '. Obtain necessary expression,	10M
rational factor `I/D'. Obtain necessary expressions.	c) Find the Z- transform of $a^n u(-n - 1)$ with a down sampling by a factor `2'.Comment on 4M ROC in comparison with original ROC i.e. $a^n u(-n-1)$ ROC. With the help of block diagram explain the sampling rate conversion by a 10M rational factor `I/D'. Obtain necessary expressions.		
 rational factor `I/D'. Obtain necessary expressions. 6. Describe the decimation process with a factor of `M '. Obtain necessary expression, 10. 	c) Find the Z- transform of $a^n u(-n - 1)$ with a down sampling by a factor `2'.Comment on4MROC in comparison with original ROC i.e. $a^n u(-n-1)$ ROC.4MWith the help of block diagram explain the sampling rate conversion by a rational factor `I/D'. Obtain necessary expressions.10MDescribe the decimation process with a factor of `M '. Obtain necessary expression,10M	Name of the Subject DIGITAL SIGNAL PROCESSING	Page
rational factor `I/D'. Obtain necessary expressions. 6. Describe the decimation process with a factor of `M '. Obtain necessary expression, 10.	c) Find the Z- transform of $a^n u(-n - 1)$ with a down sampling by a factor `2'.Comment on4MROC in comparison with original ROC i.e. $a^n u(-n-1)$ ROC.4MWith the help of block diagram explain the sampling rate conversion by a rational factor `I/D'. Obtain necessary expressions.10MDescribe the decimation process with a factor of `M '. Obtain necessary expression,10M	ivalle of the Subject Dioff AL Signal PROCESSING	Paye
	c) Find the Z- transform of $a^n u(-n - 1)$ with a down sampling by a factor `2'.Comment on 4M ROC in comparison with original ROC i.e. $a^n u(-n-1)$ ROC.	rational factor `I/D'. Obtain necessary expressions.	10M
4. (a) What is up-sampling and down sampling ? 3M		(c) What is imaging?	4M
(c) What is imaging? 4N			
(b) Find the Z- transform of $a^n u(n)$ upsampled by a factor 2. (c) What is imaging? 3M	b) Find the Z- transform of $a^n u(n)$ upsampled by a factor 2. 3M	•	3M
 3. (a) What is decimation and interpolation? Explain briefly with suitable sketches. (b) Find the Z- transform of aⁿu(n) upsampled by a factor 2. (c) What is imaging? 	a) What is decimation and interpolation? Explain briefly with suitable sketches. 3M b) Find the Z- transform of $a^n u(n)$ upsampled by a factor 2. 3M	(c) Can fractional sampling implemented directly? Justify your answer with suitable example.	4M
suitable example.3.3. (a) What is decimation and interpolation? Explain briefly with suitable sketches. $3N$ (b) Find the Z- transform of $a^n u(n)$ upsampled by a factor 2. $3N$ (c) What is imaging? $4N$	suitable example. a) What is decimation and interpolation? Explain briefly with suitable sketches. b) Find the Z- transform of $a^n u(n)$ upsampled by a factor 2. 3M	(b) What is the imaging and aliasing ? How their spectrum differ?	3M
 (b) What is the imaging and aliasing ? How their spectrum differ? (c) Can fractional sampling implemented directly? Justify your answer with suitable example. 3. (a) What is decimation and interpolation? Explain briefly with suitable sketches. (b) Find the Z- transform of aⁿu(n) upsampled by a factor 2. (c) What is imaging? 	 b) What is the imaging and aliasing ? How their spectrum differ? c) Can fractional sampling implemented directly? Justify your answer with suitable example. a) What is decimation and interpolation? Explain briefly with suitable sketches. b) Find the Z- transform of aⁿu(n) upsampled by a factor 2. 	2. (a) Explain the need of multirate signal processing with suitable example.	3M
 (b) What is the imaging and aliasing ? How their spectrum differ? (c) Can fractional sampling implemented directly? Justify your answer with suitable example. 3. (a) What is decimation and interpolation? Explain briefly with suitable sketches. (b) Find the Z- transform of aⁿu(n) upsampled by a factor 2. (c) What is imaging? 	 b) What is the imaging and aliasing ? How their spectrum differ? c) Can fractional sampling implemented directly? Justify your answer with suitable example. a) What is decimation and interpolation? Explain briefly with suitable sketches. b) Find the Z- transform of aⁿu(n) upsampled by a factor 2. 	(b) What is aliasing ? What is the need for anti- aliasing filter prior to down sampling.	5M 5M
 (b) What is aliasing ? What is the need for anti- aliasing filter prior to down sampling. 2. (a) Explain the need of multirate signal processing with suitable example. (b) What is the imaging and aliasing ? How their spectrum differ? (c) Can fractional sampling implemented directly? Justify your answer with suitable example. 3. (a) What is decimation and interpolation? Explain briefly with suitable sketches. (b) Find the Z- transform of aⁿu(n) upsampled by a factor 2. (c) What is imaging? 	b) What is aliasing ? What is the need for anti- aliasing filter prior to down sampling. 5M a) Explain the need of multirate signal processing with suitable example. 3M b) What is the imaging and aliasing ? How their spectrum differ? 3M c) Can fractional sampling implemented directly? Justify your answer with 4M suitable example. 3M a) What is decimation and interpolation? Explain briefly with suitable sketches. 3M b) Find the Z- transform of $a^n u(n)$ upsampled by a factor 2. 3M	1. (a) Define down sampling and up sampling with suitable example.	5M

	QUESTION BANK	2016
sketch frequency response. Also discuss aliasing effect.		
7. a)What is sub band coding? How is it achieved with the help of multb) Write short note on Decimation	i rate DSP?	5M 5M
8. (a) Discuss the need for signal compression.(b) Explain the concept of dual tone multi frequency signal detection	n.	5M 5M
9. Discuss the applications digital signal processing.		10 M
 10. Explain the following: a) Decimation b) Interpolation c) Sampling rate conversion d) Up sampling e)Down sampling 		2M 2M 2M 2M 2M

Prepared by T.nagaraju

QUESTION BANK 2016

16) If the system output depends of	on present, past and futu	re inputs, the system is	said to be []
A) Causal system B)	non causal system	C) linear system	D)non linear system
17) If a system satisfies the super	position theorem then sy	stem is said to be	system []
A) Timevarient	B) Time invariant	C) non linear	D) linear
18) If a relaxed system doesn't sat	tisfy the superposition th	neorem then system is sa	aid to be []
A) Timevarient	B) Time invariant	C) non linear	D) linear
19) A LTI system is said to be sta	ble if=		[]
A) Unbounded O/Ps for U	nbounded I/Ps	B) Unbounded O/Ps f	for bounded I/Ps
C) bounded O/Ps for boun	ded I/Ps	D) bounded O/Ps for	Unbounded I/Ps
20)Is example for linear sig	nal		[]
A) S1 (t) = 5 t B) S	S2(t) = 10 t2 (C)S3 (t) = 20 t2	D) None
21) Is alternate Method for	processing analog signal	ls	[]
A) A to D converter B) I			
22)The Sequence of steps for con			[]
A) Encoding, Sampling, Q		ampling, Quantizing, En	
C) Quantizing, Sampling,	e e		
23) Is Operation on Independent V	-		[]
A) Scalar Multiplication B		Addition operation I	
24) Is Operation on depende		Addition operation 1	
A) Scalar Multiplication B		C) Time Deverse1D) Tin	[]
	· ·	C) Time ReversalD) Tin	÷
25) If $x(n)$ is given signal then $x(2)$		Multiplication of w (p)	[]
A) Compressed of $x(n)$	-) Multiplication of x (n)	
26) If $x(n)$ is given signal then $x(n)$			
A) Compression of $x(n)$		\mathcal{L}) Multiplication of x (n	
27) Given is true for unit sample s	-		[]
A) δ (n) =1 n=0	,	C) $\delta(n) = 1$ $n=1$	D) None
28) Given is true for unit step seq			
A) u (n) =1 n≥0	, , ,	C) $\delta(n) = 1$ n=1	D) None
29) is the relation δ (n) in	. ,		[]
A) δ (n)=u (n-1)		C) δ (n)= u(n)+u (n-1)	D) None
30) Given is true for Energy Signa			[]
A) P=∞	B) P=0	C) E=0	D) None
31) Given is true for Power Signa	l		[]
A) E=∞	B) E=0	C) P=0	D) None
32) A signal is periodic signal wit	h period 'N' if $x(n) = -$		[]
A) x (2N)	B) x (n+N)	C) x(n-1)	D) None
33) Is fundamental period of x(n	$= \cos(n\pi/2)$		[]
A) 4	B) 8	C) 2	D) None
34) A signal is said to be even sig	nal if		[]
A) $x(-n) = -x(n)$	B) $x(-n)=2x(n)$	C) x $(-n) = x(n)$	D) None
35) A signal is said to be odd sign			[]
• • •	B) x $(-n)=2x(n)$	C) x $(-n) = x(n)$	D) None
36) If $x(n)$ is given signal then ev			[]
A) $x_{e}(n)=x(n)+x(-n)$ B)	-		D) None
			•
Name of the Subject DIGITAL SI	GNAL PROCESSING		Page

			QUESTION BANK	201	6
(37) If x(n) is given signal the	n odd part of $x(n)$ is			[]
A) $x o(n)=x(n)+x(-n)$		-n) C) x $o(n)=1/2$	[x(n)-x(-n)] [D] Non	e	
38) A signal is said to be cause	•]
A) x (n)=0 n<0	B) x (n)=0 n>0	C) x (n)=		e	
(39) A System is said to be cau	• •			[]]
A) Present Inputs	B) past inputs	C) both	h D) No		_
0) DFS is a mathematical too	•			[]]
A) Aperiodic Sequence	es B) Periodic Se	quences	C) Both D) N	lone	
		<u>II – II</u>			
	RIER TRANSFO		<u>THM (FFTA)</u>		
1) In N-Point DITFFT, numbe		-		[]
[A] 2N 2) In 16-Point DITFFT, each s	[B] 3N	[C] N/2	[D] N/3	Г	1
[A] 2	[B] 3	[C] 4	[D] 8	L]
) In N-Point DIT-FFT input			[_] •	ſ	1
[A] Natural	·	[C] even	[D] None	L	1
) In N-Point DIT-FFT, numb	er of stages in the fl	ow graph is		[]
[A] 2N	[B] 3N	[C] log ₂ N	[D] 2log ₂ N		
i) In N-Point DITFFT, output				[]
[A] Natural	[B] Bit reversal	[C] even	[D] None	F	
i) Direct DFT requires	-	-		L]
	$[\mathbf{B}] \mathbf{N}^2$	$[C] (N/2) \log_2 N$		г	1
) FFT algorithms requires	-	-		l]
[A] N	$[\mathbf{B}] \mathbf{N}^2$	$[C] (N/2) \log_2 N$		г	1
3) In DITFFT, Inputs/outputs [A] 2 ^m	$[\mathbf{B}] 2^{m-1}$	$[\mathbf{C}] 2^{\mathrm{m}} - 1$	•	L]
			[D] None	Г	1
) In direct computation of DF [A] 2N ²	[B] 2N	[C] 4N ²	[D] None	L]
0) In direct computation of D				ſ	1
[A] 2N	[B] 2(N-1)	[C] 4N (N-1)	[D] None	L	1
1) In direct computation of D	, ,			ſ	1
$[\mathbf{A}] \mathbf{N}^2$	[B] N (N-1)	[C] (N-1)/2	[D] None	L	1
2) In direct computation of D	, ,	· ·		ſ]
$[\mathbf{A}] \mathbf{N}^2$	[B] N (N-1)	[C] (N-1)/2	[D] None	L	1
3) In radix 2 FFT, the no of c	, ,	` ` `		ſ]
		-	N/2) [D] (N) $\log_2(N)$	L	
4) In radix 2 FFT, the no of c		· · · · ·		[]
	-	-	N/2) [D] (N) $\log_2(N)$	-	-
5) For a 32 point DFT using				[]
[A] 992	[B] 986	[C] 942	[D] 936		
6) For a 16 point DFT using	direct method, no of	complex multiplic	cations are	[]
[A] 240	[B] 256	[C] 235	[D] 128		
7) In 128 point FFT, the num	ber of complex addi	tions are		[]

			QUESTION BANK 2016
[A] 992	[B] 896	[C] 448	[D] 16256
18) In 64 point FFT, the m	umber of complex mult	iplications are	[]
[A] 1024	[B] 896	[C] 192	[D] 80
19) The value of the twidd	le factor at N=4 and n*	k=3 is	[]
[A] j	[B] -j	[C] 1	[D] 0
20) Complex multiplicatio	n takes place before ad	d/sub operations in	[]
[A] DIT	[B] DIF	[C] Both	[D] None
21) Complex multiplicatio	n takes place after add/	sub operations in	[]
[A] DIF	[B] DIT	[C] both	[D] None
22) If X(k) consist of N- n	o of frequency samples	, then its discrete frequ	ency locations are given by the
, , ,			
[A] f _k =KF _s /N	[B] f _k =F _s /N	[C] $f_k = KN/F_s$	[D] f _k =N
23) Twiddle factor W_N give			
[A] $e^{-j2\pi/n}$	[B] $e^{j2\pi/n}$	$[C] - e^{-j2\pi/n}$	[D] $e^{-j\pi/n}$
24) Symmetry property of			[2] •
$[\mathbf{A}] \mathbf{w}_{\mathbf{k}} \overset{k+n/2}{=} \mathbf{w}_{\mathbf{k}}^{\mathbf{k}}$	[B] $w_N^{k+n/2} = -w_N^k$	$[C] w_{x}^{k+n/3} - w_{x}^{k}$	[D] $w_{xx}^{k+n/4} - w_{xx}^{k}$
$[II] W_N = W_N$		$[\mathbf{C}] \mathbf{w}_{N} = \mathbf{w}_{N}$	
25) Periodicity property of	twiddle factor is		r 1
$(A) = \frac{k+n}{k}$	[B] $w_N^{k+n/2} = -w_N^k$	$[C] w = {}^{k+n} - w = {}^{k}$	$\begin{bmatrix} \mathbf{L} \end{bmatrix}$
26) By using twiddle factor $[A] N/2$ last N			
$[A] N/2 \log_2 N$	$[\mathbf{B}] N/4 \log_2 N$	$[C] N/2 \log_2^{2N}$	$[\mathbf{D}] - \mathbf{N}/2 \log_2 \mathbf{N}$
27) The number of butterf		-	
[A] N/2	[B] N/4	[C] N	[D] N/6
28) Bit reversal order for I	e e		
[A] {0,2,4,6,1,3,5,7}			[D] {0,4,6,2,1,5,7,3}
29) Bit reversal order for (-		[]
[A] {0,2,4,6,1,3,5,7}			7} [D] {0,4,6,2,1,5,7,3}
30) The I/Ps and O/Ps for	•		[]
$[A] 2^{m}$	[B] 2 ^{m-1}	$[C] 2^{m+1}$	[D] 2 ^{-m}
31) Computational comple	exity willb	y using twiddle factors	in FFT calculation []
[A] Increase	[B] Decrease	[C] Not effected	[D] be same
32) How many twiddle fac	tors are required for co	mputing 8-point FFT	[]
[A] 8	[B] 16	[C] 2	[D] 4
33) How many twiddle fac	tors are required for co	mputing 16-point FFT	[]
[A] 8	[B] 16	[C] 2	[D] 4
34) How many twiddle fac	tors are required for co	mputing 32-point FFT	
[A] 8	[B] 16	[C] 2	[D] 4
35) W_8^0 value is			[]
[A] 1	[B] 0.707-j0.707	[C] -j	[D] -0.707-j0.707
36) W_8^1 value is	_		[]
[A] 1	[B] 0.707-j0.707	[C] -j	[D] -0.707-j0.707
37) W_8^2 value is	L-J 01107 J01107	L~J J	[D] 0.707 j0.707
[A] 1	[B] 0.707-j0.707	[C] -j	[D] -0.707-j0.707
$(\mathbf{A})^{1}$ 38) \mathbf{W}_{8}^{3} value is		[~] J	[1]
			L J

			QUESTION BANK	20	16
[A] 1	[B] 0.707-j0.707	[C] -j	[D] -0.707-j0.7	07	
39) In 16 point DITFF	T algorithm number of but	terflies per stage is		[]
[A] 16	[B] 8	[C] 4	[D] 2		
40) In 8 point DITFFT	algorithm number of butte	erflies per stage is		[]
[A] 16	[B] 8	[C] 4	[D] 2		
41) In 32 point DITFF	T algorithm number of but	terflies per stage is		[]
[A] 16	[B] 8	[C] 4	[D] 2		
42) In 4 point DITFFT	f algorithm number of butte	erflies per stage is		[]
[A] 16	[B] 8	[C] 4	[D] 2		

<u>UNIT – III</u> Implimentation of discrete Time Systems

1) The three factors that influence structures are computation complexity,	• – –
[A] Speed [B] Accuracy [C] finite word length	[D] None
2) The unit sample response of FIR system is identical to	[]
[A] $h(n)=0$ [B] $h(n)=b_n$ [C] $h(n)=u(n)$	[D] None
3) The length of FIR filter is	[]
[A] M-1 [B] M [C] M-2	[D] None
4) The direct form structure is equivalent to	[]
[A] Sampling [B] DFT [C] convolution	[D] None
5) The number of memory locations needed to realize direct form structur	e is []
[A] M-1 [B]M [C]M+N-1	[D] None
6) The number of additions per output point needed to realize direct form	
[A] M [B] M-1 [C] M-N-1	[D] None
7) The number of multiplications per output point in direct form structure	
[A] M [B] M-1 [C] M+N-1	[D] None
8) The tapped delay line filter is also called as	[]
[A] parallel form [B] Direct form [C] Cascade form	[D] None
9) The condition for FIR system to have linear phase is	[]
[A] $h(n)=0$ [B] $h(n)=+/-h(M-N-1)$ [C] $h(n)=h(M-N)$	[D] None
10) For a linear phase FIR system if M =even the no of multiplications is	
[A] M $[B]$ (M-1)/2 $[C]$ M/2	[D] (M+1)/2
11) For a linear phase FIR system if M=odd the no of multiplications is [
] [D] (M N 1)/2
	[D] (M-N-1)/2
12) In frequency sampling structure the value used to characterize the filte	
[A] impulse response [B] step response [C] frequency response	
13) The most efficient form of realization is	
[A] Direct form [B] parallel [C] frequency sampling	[D] cascade
14) The structure that is mostly used in digital speech processing is	[]
	rect form
15) IIR filter's Direct form is obtained by cascading all zero system with	
[A] Inverse system [B] conjugate system [C] all pole system	em [D] None
16) In IIR direct form I the number of additions is	[]
[A] (M+N)/2 [B] (M-N)/2 [C] M-N [D] M+N	
17) The no of memory locations needed to realize IIR direct form I is	[]
[A] M+N-1 [B] M+N+1 [C] M+N [D] M-N	
18) In IIR direct form I the number of multiplications is	[]
[A] M+N-1 [B] M+N+1 [C] M-N-2 [D] None	

	QUESTION BANK 2016
19) The no of multiplications required to realize IIR direct form II is	
)] None
20) The Direct form structure is also called as	D] None
[A] sampling [B] Canonic [C] Parallel [D] 21) The no of additions required to realize IIR direct form II is	
[A] M+N-1 [B] M+N+1 [C] M+N [D] None	
22) The structure obtained by changing all branch direction and input	
] None
23) The structure that needs lesser memory location is	
[A] Direct form I [B] Direct form II [C] Cascade 24) The Parallel form realization of IIR system is obtained by	
[A] Differential equation [B] Difference equation [C] Partial	
25) The Lattice coefficients are also called as	
[A] Constants coefficient [B] parallel coefficient [[] C] reflectio	n coefficient [D] None
26) The Polar form of Z can be expressed as	[]
[A] -re ^{jw} [B] re ^{jw} [C]) e^{jw}	[D] None
27) Z transform of sequence $x(n) = \{1,0,3\}$ is	[]
$[A] 1+Z+3Z^{-2} [B] 1+3Z^{-2} [C] 1+Z^{-2}$	[D] None
28) Z transform of sequence $x(n) = \{1,1,3\}$ is(take origin at sec [A] $Z^{-1}+1+Z$ [B] $Z^{-1}+1+2Z$ [C] $1+Z^{-2}$	(D] None
$(A) \Sigma^{+1+2} \qquad (B) \Sigma^{+1+22} \qquad (C) \Gamma^{+2}$ 29) ROC for Left hand finite sequence is	
[A] Entire Z except $Z=0$ [B] Entire Z except $Z=\infty$ [C] Entire	e Z except Z=1 [D] None
30) ROC for Right hand finite duration sequence is	
[A] Entire Z except Z=0 [B] Entire Z except $Z=\infty$ [C] Entire	e Z except Z=1 [D] None
31) ROC for Left hand infinite duration sequence is	
[A] Inside circle [B] Outside circle [C] Entire Z 32) ROC for Right hand infinite duration sequence is	[D] None
[A] Inside circle [B] Outside circle [C] Entire Z	[D] None
33) The range of values of Z for which z-Transform converges called	
[A] Region of complex [B] Region of covariance [C] Region	
34) ROC for Two sided finite duration sequence is	[]
[A] Inside circle [B] Outside circle [C] Entire Z ex	cept Z=0 & Z= ∞ [D] None
35) Z-transform of unit sample sequence is	[]
[A] 1 [B] 0 [C] u(n	
36) Z-transform of δ (n-m) is	
$[A] Z^{m} [B] Z^{m-1} [C] Z^{-m}$	[D] None
37) Z-transform of unit step sequence is	[]
[A] z [B] z/z-1 [C] z-1	[D] None
38) Z-transform of $a^n u(n)$ is	[]
[A] z [B] z/z-a [C] z-a	[D] None
39) ROC for unit sample sequence is	
[A] Entire Z [B] Entire Z except Z=0 [C] Entire Z	$Z \operatorname{except} Z = \infty [\mathbf{D}] \operatorname{None}$
40) ROC for unit step sequence is [A] Entire Z [B] Entire Z except Z=0 [C] $ Z > 1$	[D] None

	QUESTION B	ANK 2	2016
UNIT	<u>' – IV</u>		
Design of Di	gital Filters		
1.IIR Filters are		[]
A)Recursive type	B)Non-Recursive type		
C)Neither Recursive nor non-recursive	D)None		
2.In the Impulse Invariance Transformation, relation	ship between Ω and ω is	[]
A) $\Omega = \omega T$	B) $\Omega = \omega/T$		
C) $\omega = \Omega/T$	D) $\omega = T / \Omega$		
3.Non-linearity in the relationship between Ω and α	o is known as	[]
A)Aliasing	B)Frequency Warping		
C)Unwarping	D)Frequency Mixing		
4. In The Bilinear Transformation, the Relationship	between Ω And Ω Is	[]
A) $\Omega=2\tan(\omega/2)$	B) $\Omega=2/T \tan(\omega/2)$		
C) $\Omega = 1/Ttan(\omega/2)$	D) $\Omega = \tan(\omega T/2)$		
5.Butterworth filters have		[]
A)Wideband Transition Region	B) Sharp Transition Region		
C) Oscillation in Transition Region	D) None		
6. Chebyshev filters have		[]
A)Wideband Transition Region	B) Sharp Transition Region		
C) Oscillation in Transition Region	D) None		
7. Type-1 Chebyshev filters contains		[]
A)oscillations in the passband	B) oscillations in the passbar	nd	
C) oscillations in the stop and pass banda	D) Oscillation in Transition	band	
8. Type-2 Chebyshev filter is also called		[]
A)inverse chebyshev filter	B)elliptic filter		
C) reverse chebyshev filter	D)None		
9. The physically realizable IIR filters do not have	phase	[]
A)linear	B)Non-linear		
C)magnitude	D)None		
10.Intransformation,the impulse i	response of digital filter is the	[]
Sampled version of the impulse of analog filter.			
A)impulse invariant	B)bilinear		
C)magnitude	D)phase		
11.Alaising occurs only intransfo	rmation.	[]

	QUESTION B	ANK 2	2016
A) impulse invariant	B)bilinear		
C)magnitude	D)phase		
12.Inapproximation,the magnitude re	sponse is equiripple in the	[]
Passband and monotonic in the stopband			
A) Type-1 Chebyshev	B) Type-2 Chebyshev		
C)butterworth	D)None		
13.Inapproximation,the magnitude re	esponse is monotonic in the	[]
Passband and equiripple in the stopband			
A) Type-1 Chebyshev	B) Type-2 Chebyshev		
C)butterworth	D)None		
14. Inapproximation, the magnitude r	esponse is maximally flat at the	[]
origin and monotonically decreases with increasi	ng frequency		
A) Type-1 Chebyshev	B) Type-2 Chebyshev		
C)butterworth	D)None		
15.At the cutoff frequency ,the magnitude of the bu	tterworth filter is	[]
times the maximum value			
A)1/\dv2	B)1/2		
C)1	D)-1/2		
16.The ideal filters are		[]
A)causal	B)Non causal		
C)symmetric	D)none		
17.In fourier series method to get transfer function of	of realizable filter, H(z) is to be	[]
Multiped by			
A) $z^{-(N-1)/2}$	B) $z^{(N-1)/2}$		
C) z ^{-(N-1)}	D) z ^(N-1)		
18. The abrupt truncation of fourier series results in	oscillations in	[]
A)stopband	B)passband		
C)both A and B	D)none		
19. The frequency of a digital filter is		[]
A)periodic	B)Non periodic		
C)may be periodic or Non periodic	D)none		
20.For rectangular window ,the main lobe width is	equal to	[]
A)2π/N	B) 4π/N		
C) 8π/N	D) 12π/N		
21.For Hanning window ,the main lobe width is eq	ual to	[]

	QUESTION B	ANK 2	2016
A)2π/N	B) 4π/N		
C) 8π/N	D) 12π/N		
22.For Hamming window ,the main lobe width is eq		[]
A)2π/N	B) 4π/N	-	د
C) 8π/N	D) 12π/N		
23.For blackman window, the main lobe width is equ		[]
A)2π/N	B) 4π/N	-	د
C) 8π/N	D) $12\pi/N$		
24.For kaiser window ,the main lobe width is equal t		[]
A)Adjustable	B) 4π/N	-	د
C) 8π/N	D) $12\pi/N$		
25.For Rectangular window, the peak side lobe mag		[]
A)-13	B)-31	L	L
C)-41	D)-58		
26.For Hanning window ,the peak side lobe magnitu		[]
A)-13	B)-31	L	L
C)-41	D)-58		
27.For Hamming window ,the peak side lobe magnit		[]
A)-13	B)-31	-	
C)-41	D)-58		
28.For Blackman window ,the peak side lobe magnit		[]
A)-13	B)-31	-	
C)-41	D)-58		
29. for a linear phase filter the delay is	- /	[]
A)variable	B)constant	•	
C)function	D)sequence		
30.In FIR filters , is a linear function of		[]
A) phase	B)width	-	
C)oscillations	D)None		
31.In window spectrum the higher		[]
Achieved at the expense of increased main lobe w		-	-
A)Blackman	B)Hamming		
C)Kaiser	D)Hanning		
32.In window spectrum the increa		[]
Achieved at expense of constant attenuation at hig		L	L
	SING		Page

	QUESTION BAI	١K	2016
A)Blackman	B)Hamming		
C)Kaiser	D)Hanning		
33. In window spectrum has the highe	, C	ſ]
A)Blackman	B)Hamming	L	-
C)Kaiser	D)Hanning		
34. In window spectrum, the side lobe		[]
A)Blackman	B)Hamming	_	-
C)Kaiser	D)Hanning		
35. In window spectrum, the width of	the main lobe is triple that of	[]
Rectangular window for same value of N			
A)Blackman	B)Hamming		
C)Kaiser	D)Hanning		
36.In window spectrum, the width of	the main lobe is double that of	[]
Rectangular window for same value of N			
A)Blackman	B)Hamming		
C)Kaiser	D)Hanning		
37.The response of the filter is fourier	transform of impulse response	[]
Of the filter.			
A)magnitude	B)phase		
C)frequency	D)natural		
38. The ideal filters are, and hence pl	hysically unrealizable	[]
A)causal	B)Non causal		
C)symmetric	D)none		
39.In FIR filters with constant phase delay, the impulse r	response is	[]
A)causal	B)Non causal		
C)symmetric	D)none		
40. The generation of oscillations due to slow convergence	ce of the fourier series near the	[]
Points of discontinuity is called	phenomenon		
A)Gibbs	B)Guassian		
C)Poission	D)Rayleigh		

QUESTION BANK 2016

<u>UNIT – V</u>

Multirate Digital signal processing

A)decrease in sampling rateB) increase in sampling rateJC)no change in sampling rateD)random change in sampling rateIA)decrease in sampling rateB) increase in sampling rateD)random change in sampling rateIC)no change in sampling rateD)random change in sampling rateD)random change in sampling rateI3.The down-sampled signal is obtained by multiplying the signal X(n) withIIA)impulse functionB)unit step functionIIC)unit ramp functionD)train of impulsesIIA)before down samplerB)after the down samplerIIC)after up samplerD)before up samplerIIA)before down samplerB)after the down samplerIIC)after up samplerD)before up samplerIIA)time varying systemsB) time invarying systemsIIC)after up samplerD)upredictableIIA)time varying systemsB) L1 zeros between samplesIIA)I zeros between samplesD)D/2 samplesIIIA)D samples by a factor D skipsD)D/2 samplesIIIA)D imagesD)D/2 imagesD)D/2 imagesIIIA)D imagesD)D/2 imagesIIIIA)D imagesD)D/2 imagesIIIIA)D imagesD)D/2 imagesIIIIA)D imagesD)D/2 imagesIIIIA)D images <th>1.Decimation results in</th> <th></th> <th>[</th> <th>]</th>	1.Decimation results in		[]
2.Interpolation results in A)decrease in sampling rate B) increase in sampling rate I A)decrease in sampling rate D)random change in sampling rate I 3.The down-sampled signal is obtained by multiplying the signal x(n) with [] A)impulse function B)unit step function [] C)unit ramp function D)train of impulses [] 4.Anti-aliasing filter is to be kept [] C)after up sampler D)before up sampler [] C)after up sampler D)before up sampler [] A)before down sampler me []] C)after up sampler D)before up sampler [] A)before down sampler me D)before up sampler [] G)after up sampler D)before up sampler [] A)time varying systems B) time invarying systems [] C)both A and B D)unpredictable [] 7.Up sampling by a factor I introduces []] A)D samples B) D-1 samples [] C)no xamples	A)decrease in sampling rate	B) increase in sampling rate		
A)decrease in sampling rateB) increase in sampling rate[1C)no change in sampling rateD)random change in sampling rate13.The down-sampled signal is obtained by multiplying the signal x(n) with[1A)impulse functionB)unit step function[1C)unit ramp functionD)train of impulses14.Anti-aliasing filter is to be kept[1A)before down samplerB)after the down sampler1C)after up samplerD)before up sampler15. Anti-imaging filter is to be kept[1A)before down samplerB)after the down sampler1C)after up samplerD)before up sampler1C)after up samplerD)before up sampler1C)after up samplerD)before up sampler16.Up sampler and down sampler are[1C)both A and BD)unpredictable17.Up sampling by a factor I introducesD) I/2 zeros between samples1C)no zerosD)D/2 samples11A)D samplesB)D-1 samples11C)no samplesD)D/2 samples119. Down sampling by a factor D introduces how many additional images?[1A)D imagesD)D/2 images10.Up sampling by a factor I introduces how many additional images?[1A)D imagesD)D/2 imagesD)D/2 images1110. Up sampling by a factor I introduces how many additional images?[1A)I imagesD)D/2 images1 <td< td=""><td>C)no change in sampling rate</td><td>D)random change in sampling</td><td>rate</td><td></td></td<>	C)no change in sampling rate	D)random change in sampling	rate	
C)no change in sampling rateD)random change in sampling rateI3.The down-sampled signal is obtained by multiplying trigen (n) with (n)	2.Interpolation results in			
 3.The down-sampled signal is obtained by multiplying the signal x(n) with A)impulse function B)unit step function C)unit ramp function D)train of impulses 4.Anti-aliasing filter is to be kept A)before down sampler B)after the down sampler C)after up sampler D)before up sampler C)after up sampler and down sampler are C)both A and B D)unpredictable 7.Up sampling by a factor I introduces B) I-1 zeros between samples C)no zeros D) I/2 zeros between samples C)no samples B)D-1 samples C)no samples D)D/2 samples D)D/2 samples C)no images D)D/2 images D)D/2 images I-1 images C)no images D)L/2 images D)L/2 images 	A)decrease in sampling rate	B) increase in sampling rate	[]
A)impulse functionB)unit step functionC)unit ramp functionD)train of impulses4.Anti-aliasing filter is to be kept[]]A)before down samplerB)after the down samplerC)after up samplerD)before up sampler5. Anti-imaging filter is to be kept[]]A)before down samplerB)after the down samplerC)after up samplerD)before up sampler5. Anti-imaging filter is to be kept[]]A)before down samplerB)after the down samplerC)after up samplerD)before up sampler6.Up sampler and down sampler are[]]A)time varying systemsB) time invarying systemsC)both A and BD)unpredictable7.Up sampling by a factor I introduces[]]A)I zeros between samplesD) I/2 zeros between samplesC)no zerosD) I/2 zeros between samplesS. Down sampling by a factor D skips[]]A)D samplesB)D-1 samplesC)no samplesD)D/2 samples9. Down sampling by a factor D introduces how many aditional images?[]]A)D imagesD)D/2 images10. Up sampling by a factor I introduces how many aditional images?[]]A)I imagesD)D/2 images10. Up sampling by a factor I introduces how many aditional images?[]]A)I imagesD)D/2 images10. Up sampling by a factor I introduces how many aditional images?[]]A)I imagesD)D/2 images	C)no change in sampling rate	D)random change in sampling	rate	
C)unit ramp functionD)train of impulses4.Anti-aliasing filter is to be kept[]A)before down samplerB)after the down sampler[]C)after up samplerD)before up sampler[]5. Anti-imaging filter is to be kept[]A)before down samplerB)after the down sampler[]C)after up samplerD)before up sampler[]C)after up samplerD)before up sampler[]C)after up sampler and down sampler are[]]A)time varying systemsB) time invarying systems[]C)both A and BD)unpredictable[]7.Up sampling by a factor I introducesD) I/2 zeros between samples[]C)no zerosD) I/2 zeros between samples[]A)D samplesB)D-1 samples[]A)D samplesD)D/2 samples[]9. Down sampling by a factor D introduces how many ditional images?[]A)D imagesD)D/2 images][]A)D imagesD)D/2 images[]A)D imagesD)D/2 images[]A)I imagesB) I-1 images?[]A)I imagesB) I-1 images?[]A)I imagesD)D/2 images[]	3. The down-sampled signal is obtained by multiplying t	he signal x(n) with	[]
4.Anti-aliasing filter is to be kept[]A)before down samplerB)after the down sampler[]C)after up samplerD)before up sampler[]5. Anti-imaging filter is to be kept[]]A)before down samplerB)after the down sampler[]C)after up samplerD)before up sampler[]C)after up samplerD)before up sampler[]6.Up sampler and down sampler are[]A)time varying systemsB) time invarying systems[]C)both A and BD)unpredictable[]7.Up sampling by a factor I introduces[]]A)I zeros between samplesB) I-1 zeros between samples[]C)no zerosD) I/2 zeros between samples[]A)D samplesB)D-1 samples[]A)D samplesB)D-1 samples[]A)D imagesB) D-1 images?[]A)D imagesD)D/2 images?[]A)D imagesB) I-1 images?[]A)I imagesD)I/2 images[]A)I	A)impulse function	B)unit step function		
A)before down sampler B)after the down sampler C)after up sampler D)before up sampler [] [] A)before down sampler B)after the down sampler [] A)before down sampler B)after the down sampler D)before up sampler A)time varying systems B) time invarying systems C)both A and B D)unpredictable [] 7.Up sampling by a factor I introduces D)unpredictable [] A)I zeros between samples B) I-1 zeros between samples D) L/2 zeros between samples D) D/2 samples C)no zeros D) L/2 zeros between samples D) D/2 samples [] A)D samples B) D-1 samples [] A)D samples B) D-1 samples [] A)D samples D) D/2 samples [] B) D-1 images [] A)D images B) D-1 images [] A)D images B) D-1 images [] A)D images B) D-1 images [] A)I images B) D-1 images [] A)I images B) L-1 images [] A] A] A] A] A] A] A] A] A]	C)unit ramp function	D)train of impulses		
C)after up samplerD)before up sampler5. Anti-imaging filter is to be kept[A)before down samplerB)after the down samplerC)after up samplerD)before up sampler6.Up sampler and down sampler are[A)time varying systemsB) time invarying systemsC)both A and BD)unpredictable7.Up sampling by a factor I introduces[A)I zeros between samplesB) I-1 zeros between samplesC)no zerosD) L/2 zeros between samples8. Down sampling by a factor D skips[9. Down sampling by a factor D introduces how many aditional images?[9. Down sampling by a factor D introduces how many aditional images?[9. Down sampling by a factor I introduces how many aditional images?[9. Down sampling by a factor I introduces how many aditional images?[9. Down sampling by a factor I introduces how many aditional images?[10. Up sampling by a factor I introduces how many aditional images?[10. Up sampling by a factor I introduces how many aditional images?[10. Up sampling by a factor I introduces how many aditional images?[10. Up sampling by a factor I introduces how many aditional images?[10. Up sampling by a factor I introduces how many aditional images?[10. Up sampling by a factor I introduces how many aditional images?[10. Up sampling by a factor I introduces how many aditional images?[10. Up sampling by a factor I introduces how many aditional images?[10. Up sampling by a factor I introduces how many aditional	4.Anti-aliasing filter is to be kept		[]
5. Anti-imaging filter is to be kept [] A)before down sampler B)after the down sampler C)after up sampler D)before up sampler D)before up sampler 6.Up sampler and down sampler are [] A)time varying systems B) time invarying systems C)both A and B D)unpredictable 7.Up sampling by a factor I introduces [] A)I zeros between samples B) I-1 zeros between samples C)no zeros D) I/2 zeros between samples C)no zeros D) I/2 zeros between samples D)D/2 zeros between samples C)no zeros D)D/2 samples D)D/2 samples C)no samples D)D/2 samples [] A)D samples A factor D introduces how many aditional images? [] A)D images D)D/2 images [] 10. Up sampling by a factor I introduces how many additorial images? [] A)I images D)D/2 images [] A)I images D)D/2 images [] A)I images D)D/2 images [] D)D/2 images [] A)I images D)D/2 images [] A)I image	A)before down sampler	B)after the down sampler		
A)before down sampler C)after up sampler D)before up sampler A)time varying systems C)both A and B D)unpredictable 7.Up sampling by a factor I introduces C)no zeros B) I-1 zeros between samples C)no zeros B) D-1 samples C)no samples C)no images C)no images	C)after up sampler	D)before up sampler		
C)after up samplerD)before up sampler6.Up sampler and down sampler are[]A)time varying systemsB) time invarying systems]C)both A and BD)unpredictable[]7.Up sampling by a factor I introduces[]A)I zeros between samplesB) I-1 zeros between samples[]C)no zerosD) I/2 zeros between samples[]8. Down sampling by a factor D skips[]A)D samplesB)D-1 samples[]C)no samplesD)D/2 samples[]9. Down sampling by a factor D introduces how many ad/titonal images?[]A)D imagesB) D-1 images[]A)D imagesD)D/2 images[]10. Up sampling by a factor I introduces how many add/tional images?[]A)I imagesB) I-1 images[]A)I imagesD)D/2 images[]	5. Anti-imaging filter is to be kept		[]
6.Up sampler and down sampler are [] A)time varying systems B) time invarying systems C)both A and B D)unpredictable 7.Up sampling by a factor I introduces [] A)I zeros between samples B) I-1 zeros between samples C)no zeros D) I/2 zeros between samples [] 8. Down sampling by a factor D skips [] A)D samples B)D-1 samples [] A)D samples D)D/2 samples [] 9. Down sampling by a factor D introduces how many additional images? [] A)D images B) D-1 images [] A)D images [] A)D images [] 10. Up sampling by a factor I introduces how many additoral images? [] A)I images [A)before down sampler	B)after the down sampler		
A)time varying systemsB) time invarying systemsC)both A and BD)unpredictable7.Up sampling by a factor I introduces[]]A)I zeros between samplesB) I-1 zeros between samplesC)no zerosD) I/2 zeros between samplesC)no zerosD) I/2 zeros between samplesS. Down sampling by a factor D skips[]]A)D samplesB)D-1 samplesC)no samplesD)D/2 samples9. Down sampling by a factor D introduces how many additional images?[]]A)D imagesB) D-1 imagesC)no imagesD)D/2 images10. Up sampling by a factor I introduces how many additonal images?[]]A)I imagesB) I-1 imagesC)no imagesB) I-1 images </td <td>C)after up sampler</td> <td>D)before up sampler</td> <td></td> <td></td>	C)after up sampler	D)before up sampler		
C)both A and BD)unpredictable7.Up sampling by a factor I introduces[A)I zeros between samplesB) I-1 zeros between samplesC)no zerosD) I/2 zeros between samplesC)no zerosD) I/2 zeros between samples8. Down sampling by a factor D skips[A)D samplesB)D-1 samplesC)no samplesD)D/2 samples9. Down sampling by a factor D introduces how many additional images?[A)D imagesB) D-1 imagesC)no imagesD)D/2 images10. Up sampling by a factor I introduces how many additonal images?[A)I imagesB) I-1 imagesA)I imagesD)I/2 images	6.Up sampler and down sampler are		[]
7.Up sampling by a factor I introduces [] A)I zeros between samples B) I-1 zeros between samples C)no zeros D) I/2 zeros between samples 8. Down sampling by a factor D skips [] A)D samples B)D-1 samples C)no samples D)D/2 samples D)D/2 samples [] 9. Down sampling by a factor D introduces how many \rightarrow [] A)D images [] A)D images [] A)D images [] D)D/2	A)time varying systems	B) time invarying systems		
A)I zeros between samplesB) I-1 zeros between samplesC)no zerosD) I/2 zeros between samples8. Down sampling by a factor D skips[]]A)D samplesB)D-1 samplesC)no samplesD)D/2 samplesO)no sampling by a factor D introduces how many attional images?[]]A)D imagesB) D-1 imagesC)no imagesD)D/2 images10. Up sampling by a factor I introduces how many additional images?[]]A)I imagesB) I-1 imagesC)no imagesD)D/2 images10. Up sampling by a factor I introduces how many additional images?[]]A)I imagesB) I-1 imagesC)no imagesD)I/2 images	C)both A and B	D)unpredictable		
C)no zerosD) I/2 zeros between samples8. Down sampling by a factor D skips[A)D samplesB)D-1 samplesC)no samplesD)D/2 samples9. Down sampling by a factor D introduces how many additional images?[A)D imagesB) D-1 imagesC)no imagesD)D/2 images10. Up sampling by a factor I introduces how many additional images?[A)I imagesB) I-1 imagesC)no imagesD)D/2 images10. Up sampling by a factor I introduces how many additional images?[A)I imagesB) I-1 imagesC)no imagesD)I/2 images	7.Up sampling by a factor I introduces		[]
8. Down sampling by a factor D skips [] A)D samples B)D-1 samples C)no samples D)D/2 samples 9. Down sampling by a factor D introduces how many additional images? [] A)D images B) D-1 images C)no images D)D/2 images 10. Up sampling by a factor I introduces how many additonal images? [] A)I images B) I-1 images C)no images D)I/2 images	A)I zeros between samples	B) I-1 zeros between samples		
A)D samples B)D-1 samples C)no samples D)D/2 samples 9. Down sampling by a factor D introduces how many additional images? [] A)D images B) D-1 images C)no images D)D/2 images 10. Up sampling by a factor I introduces how many additional images? [] A)I images B) I-1 images C)no images D)I/2 images	C)no zeros	D) I/2 zeros between samples		
C)no samplesD)D/2 samples9. Down sampling by a factor D introduces how many additional images?[A)D imagesB) D-1 imagesC)no imagesD)D/2 images10. Up sampling by a factor I introduces how many additional images?[A)I imagesB) I-1 imagesC)no imagesD)I/2 images	8. Down sampling by a factor D skips		[]
9. Down sampling by a factor D introduces how many additional images? []] A)D images B) D-1 images C)no images D)D/2 images 10. Up sampling by a factor I introduces how many additional images? []] A)I images B) I-1 images C)no images D)I/2 images A)I images B) I-1 images C)no images D)I/2 images	A)D samples	B)D-1 samples		
A)D imagesB) D-1 imagesC)no imagesD)D/2 images10. Up sampling by a factor I introduces how many additional images?[A)I imagesB) I-1 imagesC)no imagesD)I/2 images	C)no samples	D)D/2 samples		
C)no imagesD)D/2 images10. Up sampling by a factor I introduces how many additional images?[A)I imagesB) I-1 imagesC)no imagesD)I/2 images	9. Down sampling by a factor D introduces how many a	dditional images?	[]
10. Up sampling by a factor I introduces how many additional images? [] A)I images B) I-1 images [] C)no images D)I/2 images []	A)D images	B) D-1 images		
A)I imagesB) I-1 imagesC)no imagesD)I/2 images	C)no images	D)D/2 images		
C)no images D)I/2 images	10. Up sampling by a factor I introduces how many add	itional images?	[]
	A)I images	B) I-1 images		
11.A delay of D sample periods before a down sampler is the same as a delay of []	C)no images	D)I/2 images		
	11.A delay of D sample periods before a down sampler	is the same as a delay of	[]

	QUESTION BANK 2016
how many sample periods after the down sampl	er.
A)D	B)1
C)D/2	D)D-1
12.A delay of one sample period before up samplin	ng leads to a delay of how many []
sample periods after the up sampling.	
A)I	B)I-1
C)I/2	D)1
13.Cascading a factor of I interpolator and a facto	r of D decimator results in a sampling []
Rate conversion by a factor of	
A)I/D	B)ID
C)D/I	D)1/ID
14. if $x(n) = \{1, 2, 3, 4, 5, 6, 7,\}$ then $x(n/2) =$	[]
A){1,0,2,0,3,0,4,0,5,0,6,0,}	B){1/2,2/2,3/2,4/2,/2,5/2,6/2,7/2,}
C){1,3,5,7,}	D){2,4,6,8,10,}
15. if $x(n) = \{1, 2, 3, 4, 5, 6, 7,\}$ then $x(2n) =$	[]
A) {2,4,6,8,10,}	B) {1,0,2,0,3,0,4,0,5,0,6,0,}
C){1,3,5,7,}	D){1,0,0,2,0,0,3,0,0,4,0,0,5,0,0}
16. sampling rate conversion, firstto be	e performed and then []
is to be performed.	
A)decimation ,interpolation	B) interpolation, decimation
C)up sampling,down sampling	D) down sampling, up sampling
17. The reciprocal of nyquist rate is called the	[]
A)decimation	B) interpolation
C)nyquist period	D)up sampling
18.Insystems, single sample rate is us	ed. []
A)multirate	B)single
C)continuous time	D)non causal
19. The systems that process data at more than one	sampling rate are called systems[]
A) multirate	B)single
C)narrow band	D)wide band
20. The basic two operations in multi rate signal pro-	ocessing areand []
A) interpolation, decimation	B) up sampling,down sampling
C)scaling, shifting	D)none
21.The complete process ofand then	is referred to as a []
Decimation	

C)Anti-aliasing	D)none		
A)imaging	B)aliasing		
to the scaled input spectra is called	- • •	-	-
30. The phenomenon of getting image spectra in the o	• • •	[]
C)three types	D)five types		
A)four types	B)two types	L	L
29.how many types of filter banks in multirate digita	,	[]
C)48,32,44.1	D)32,48,44.1		
A)48,44.1,32	B)32,44.1,48		
kHz for compact disc andkHz for	C C	L	1
28.In digital audio, the different sampling rates used		[]
C)aliasing	D)none		
A)inverse	B)transpose	L	1
27.The of a decimator is an interpolator	,	Г	1
A)cascading C)converting	B)connecting parallel D)none		
of I interpolator and a factor of D decimator.	B)connecting perallel		
26.A sampling rate conversion by a factor I/D can be	e acmeved by a factor	[]
C)aliasing	D)single rate	г	1
A)Anti-aliasing	B)Anti-imaging		
is called thefilter.	D) Anti imaging		
25. The low pass filter which is used after the upsamp	pier to remove the image spectra	l]
C) filtering, down sampling	D)none	г	1
A) delay, up sampling	B)up sampling, filtering		
Image spectra	D)un complie a filtaria a		
24.Interpolation is the complete process ofan	ia to remove	[]
C)equal	D)none	г	1
A)decreased	B)increased		
Placing I-1 equally spaced zeros between each pa	-		
23. The sampling rate of a discrete time signal can be		l]
C)multirate filter	D)single rate filter	F	1
A)Anti-aliasing	B)aliasing		
22. The filter used to band limit the signal prior to do		[]
C)delay,down sampling	D)delay,up sampling	r	1
A)filtering,down sampling	B) filtering, up sampling		
	QUESTION BAN	IK 📘	2016

	QUESTION E	BANK 2	016
31. The overlapping of the spectra at the output of the	ne down sampler due to the	[]
Lack of band limiting of the signal fed to the do	wn sampler is called		
A) imaging	B)aliasing		
C)Anti-aliasing	D)none		
32. The sampling rate of $2f_h$ samples per second when	ere f _h is the highest frequency	[]
Component in the signal is called the			
A)nyquist rate	B)multi rate		
C)single rate	D)none		
33.By performing sampling rate conversion for eith	er D>>1 and/or I>>1	[]
We go forimplementation			
A)multistage	B)single stage		
C)two stage	D)none		
34.Up sampling means		[]
A)decrease the sampling rate	B) increase the sampling ra	te	
C)no change in sampling rate	D)random change in sampl	ing rate	
35.Down sampling means		[]
A)decrease the sampling rate	B) increase the sampling ra	ite	
C)no change in sampling rate	D)random change in sampl	ing rate	
36.If $x(n) = \{1, -1, 3, 4, 0, 2, 5, 1, 6, 9,\}$ then $x(3n)$		[]
A) {2,4,6,8,10,}	B) {1,0,2,0,3,0,4,0,5,0,6,0,	}	
C){1,4,5,9,}	D){1,0,0,2,0,0,3,0,0,4,0,0,5	5,0,0}	
37.If $x(n) = \{1, 2, 3, 7, 4, -1, 5,\}$ then $x(n/3)$		[]
A) {2,4,6,8,10,}	B) {1,0,2,0,3,0,4,0,5,0,6,0,	}	
C){1,3,5,7,}	D){1,0,0,2,0,0,3,0,0,7,0,0,4	,0,0 }	
38.A cascade of a factor of D down sampler and a	factor of I upsampler is	[]
Interchangeable with no change in input and out	put relation if		
A)D and I are integers	B) D and I are co-prime		
C) D and I are rational	D) D and I are finite		
39. The D-channel synthesis filter bank is the	of D-channel	[]
analysis filter bank			
A)dual	B)single		
C)triple	D)none		
40.filter banks may befilter banks or	filter banks	[]
A)analysis, synthesis	B)sampled, sequence		
C)time, frequency	D)none		

 QUESTION BANK	2016
Prepared by: G.Tirumala Vasu and	T.Nagaraju.

 QUESTION BANK 2016