Prepared by:M.sreenivasulu reddy

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : PE(13A02503) Year & Sem: III-B.Tech & I-Sem **Course & Branch**: B.Tech - EEE **Regulation:** R13

<u>UNIT –I</u> POWER SEMI CONDUCTOR DEVICES

1) a) Explain the dynamic TURN-OFF characteristics of an SCR.	5M
b)Explain the switching characteristics of BJ1.	
2) Explain the Resistance firing circuit with the necessary wave forms	TOM
3) Explain the two transistor analogy of the thyristor. And give main features of firing circuits	10M
4) Briefly explain about insulated gate bipolar transistor(IGBT) and it's switching characterist	ics10M
5) Briefly give explanation about series and parallel operation of thyristors.	10M
6) A)what is meant by GTO? How does a GTO differ from a conventional thyristor?	5M
B) Explain switching performance of GTO	5M
7) a) explain V-I Characteristiccs of TRAIC	5M
b) what are the advantages and disadvantages of TRAIC?	5M
8) Describe input and transfer characteristics of an IGBT.	10M
9) Draw and neatly explain V-I characteristics of SCR and it's working	10M
10) a) Define forward break over voltage	2M
b) Ddefine reverse break over voltage	2M
c) what are the classifications of power semiconductor device?	2M
d) Define Latching current	2M
e) Define Holding current	2M

<u>UNIT –II</u> <u>PHASE CONTROLLED CONVERTERS</u>

1) Explain the operation of single phase semi converter with RLE load by using freewheeling	101
diode with necessary output wave forms.	TOM
2)Explain the operation of single phase half controlled bridge converter with RL-Load at α =60 with	103.6
necessary wave forms. Also derive the output voltage, output current and RMS output voltages.	10M
3.) Explain the operation of single phase full wave midpoint converter for RL load at a α =60deg with	
necessary output wave waveforms. Also derive the output voltage,	
output current & Rms voltage equations.	10M
4) What is a freewheeling diode? Draw the circuit diagram of an SCR full wave rectifier with RL	
load For with and with out freewheeling diode and explain the operation with necessary	
output waveforms	10M
5)a) Give the difference between midpoint and bridge type converters	5M
b) Give the difference between discontinuous mode and continuous mode of operation	5M
6) a) what are the difference between half controlled and fully controlled bridge rectifier?	5M
b) What are the effects of source inductance in controlled rectifier?	5M
7) Explain the operation of three phase half controlled rectifier with different loads.	10M
8) Explain the operation of 3 phase fully controlled rectifier with resistive laod	
and also derive the average and RMS load voltage	10M
9) A single phase half wave converter is operated from a 120v,60Hz supply.	10M
If the load is resistive of value 10 ohms and delay angle is alpha is 60.	
Determine i) the efficiency ii)formfactor iii)ripple factor iv) Transformer utilization factor	
v)peak inverse voltage of thyristor.	
10) a) what is meant my phase controlled rectifier?	2M
b) what is meant by uncontrolled rectifier?	2M
c) what is meant by half controlled rectifier	2M
d) what is meant by full converter?	2M
e) mention some application of controlled rectifier?	2M

UNIT-III CHOPPERS

1.(a) Explain about the jones chopper with circuit diagram and wave forms?	5M
(b) Explain about the AC chopper with circuit diagram and wave forms?	5M
2.a) Describe the principle of dc chopper operation.	5M
b) Derive an expression for it's average dc output voltage	5M
3.explain the step-up chopper operation with help of neat diagram?	10M
4. with the help of basic power circuit diagram explain the working of a current commutate	d chopper.
also, Draw the associated wave forms.	10M
5.Derive the expression for output voltage of step up chopper with neat diagrams	10M
6.a) what are the advantages of current commutated chopper?	5M
b)Discuss the main classification of dc to dc converters	5M
7.a) what are the advantages and disadvantages of load commutated chopper?	5M
b)what is meant my dc chopper explain with neat circuit diagram	5M
8.Describe the principle of dc chopper operation.	
derive an expression for its average dc output voltage	10M
9. what is a dc chopper? describe various types of chopper configurations	
with appropriate diagram wherever necessary	10M
10.a)what are the advantages of dc chopper	2M
b)what are the applications of dc chopper	2M
c)what is meant by duty cycle	2M
d)what is meant by step-down chopper	2M
e)what is meant by step-up chopper	2M

UNIT- IV INVERTERS

1.a) explain the operation of parallel inverter	5M
b)Explain the operation of series inverter	5M
2. Explain the operation of single phase half bridge voltage source inverter	10M
3.Draw and explain the simple SCR series inverter circuit. Draw and discuss the important waveforms.	
State the limitations of this series inverter.	10M
4.Explain the operation of single phase full bridge voltage source inverter and the help of voltage and	
current waveforms?	10M
5. a) what are the advantages of PWM ?	5M
b)List various PWM techniques	5M
6.Describe different types of pulse width modulation techniques (PWM) inverter	10M
7.Explain different methods of harmonic reduction in inverters	10M
8. Explain the operation of Basic Parallel Capacitor Inverter Bridge Inverter	10M
9. Explain about Voltage Control Techniques for Inverters	10M
10.a) what are the applications of inverters?	2M
b)what is meant by VSI	2M
c)what are the different methods for forced commutation employed in inverter circuits?	2M
d)what is meant by PWM control?	2M
e)what is meant by series inverter?	2M

UNIT- V

AC VOLTAGE CONTROLLERS & CYCLO CONVERTERS

1. Explain about the $1 - \emptyset$ AC voltage controller with R & RL loads with circuit diagram	
and wave forms?	10M
2. Briefly explain the operation of TRIAC in different modes	10M
3.a) what is meant by ac voltage controllers and what are the different types?	5M
b)list the applications of ac voltage controller.	5M
4. Explain the principle of operation of single phase to single phase mid point cycloconverter	10M
5. Explain the basic principle of operation of step up cyclonverter.	10M
6.Describe the principle of working of single phase to single phase cycloconverter	
For both continuous and discontinuous conduction for a bridge type cycloconverter.	10M
7.what is meant by by load commutated cycloconverter ?	
how does it differ from force commutated and line commutated cycloconverter?	10M
8.Explain the operation of single phase ac voltage controller with resistive load	10M
9. Explain the operation of Triac with R And RL Loads	10M
10.a)what is meant by acd voltage controller?	2M
b)what are the applications of ac voltage controller?	2M
c)what are the advantages and disadvantages of ac voltage controller?	2M
d)what is meant by cycloconverter?	2M
e)what are the applications of cycloconverter?	2M

		0	UESTION BAN	K 2	016
	SIDDHARTH GROU Siddharth Nagar, 1	P OF INSTITUTIO Narayanavanam Road	NS :: PUTTUR - 517583		
Latter by	QUESTIO	<u>N BANK (OBJECTI</u>	<u>VE)</u>		
Subject with Code Year & Sem: III-E	e : PE(13A02503) 3.Tech & I-Sem	Co Re	ourse & Branch: B.Tec egulation: R13	h - EEl	E
	POWER SEM	UNIT-I I CONDUCTOR DE	VICES		
1 The number of a single				г	1
A) 1	B) 2	C) 3	D) 4	L]
2. Figure shows a thyrist Cathode (K), gate (G) When the thyristor is (A) J1 and J2 (B) J1 and J3 (C) J1 is forw (D) J1, J2 and	tor with the standard te and the different junct turned on and conduc are forward biased and are forward biased and yard biased and J2 and J3 are all forward biase	erminations of anode tions named J1, J2 and ting. [] d J3 is reverse biased d J2 is reverse biased J3 are reverse biased ed	(A), J3. G G P N J2 J1 K]]
3. In a commutation circ obtained when A. circuit tu B. circuit tu C. circuit tir D. circuit tir	uit employed to turn o rn-off time < device tur rn-off time > device tur ne constant < device tu ne constant < device tu	ff an SCR, satisfactory n-off time n-off time rn-off time rn-off time	turn-off is	[]
4. In a BJT, the relation be	tween α and β			ſ	1
A) $\beta = \alpha / \alpha + 1$	B) $\beta = \alpha / \alpha - 1$	C) $\alpha = \beta / \beta + 1$	D) $\alpha = \beta / \beta + 1$	L	,
5. A power MOSFET has A) Collector, emit C) Drain, source a	three terminals, namely ter and base nd gate	B) Drain, a D) Collector, emit	source and base ter and gate	[]
6. Choose the correct state A) Both MOSFET B) Both MOSFET C) MOSFET is a D) MOSFET is a c	ment: and BJT are voltage con and BJT are current cont voltage controlled device current controlled device	trolled devices rolled device and BJT is a current con and BJT is a voltage cor	trolled device trolled device	[]
7. Secondary break down o A) MOSFET but r C) BJT but not in	occurs in not in BJT MOSFET	B) Both MOSFET D) None	and BJT	[]
Power Electronics					Page 6

QUESTION BANK 2016 8. The conduction loss versus device current characteristic of a power MOSFET is best approximated by 1 ſ A) a parabola B) a straight line B) a rectangular hyperbola D)an exponentially decaying function 9. Match list-I(devices) with list-II(switching time) and select correct answer using code given below the lists: ſ 1 List-I list-II A. TRIAC 1.5-10µs 2. 100-400 µs B. SCR C. MOSFET 3. 50-100 µs D. IGBT 4.200-400 µs Codes: A B С D 4 3 2 1 (a) (b) 1 2 3 4 (c) 4 2 3 1 2 (d) 1 3 4 10. A thyristor has a PIV of 650 V. The voltage safety factor is 2. Then the voltage up to which the device can be operated is given by 1 ſ A) 1300V B) 650V C) 325V D) 230V 1 11. An SCR triggered by a current pulse applied to the gate cathode can be turned off ſ A) By applying a pulse to the cathode B) By applying a pulse to the anode C) By applying another pulse of opposite polarity to the gate cathode D)By reversing the polarity of the anode and cathode voltage 12. A dc source of 100 v supplies a purely inductive load of 0.1 H. The controller is an SCR in series with source and load. If the specified latching current is 100ma then the minimum width of the gating pulse to ensure turn on of SCR would be 1 ſ A) 10µs B) 50 µs C) 100 µs D) 1 µs 1 13. The most suitable device for high frequency inversion in SMPS is ſ (c) MOSFET (a) BJT (b) IGBT (d) GTO 14. A modern power semiconductor device that combines the characteristics of BJT & MOSFET is 1 ſ A) GTO **B)FCT** C)IGBT D)MCT 15. Consider the following statements ſ] 1) A thyristor requires turn off circuit while transistor does not 2) The voltage drop of a thyristor is less than that of a transistor 3) A thyristor require a continuous gate current **Power Electronics**

4) A transistor draws continuous base current Which of these statements are correct?	
A) 1, 2, 3 & 4 B) 1 & 2 C) 2 & 4 D) 1 & 4	
16. di/dt protection for an SCR is achieved by [] A) R in series with SCR B) L in series with SCR C) R across SCR D) L across SCR	
 17. R-C snubber is used in parallel with the thyristor [] A) Reduce dv /dt across it B) reduce di/dt through it C) limit current through it D) ensure its conduction after gate signal is removed 	
18. Sharing of voltage between thyristors operating in series is influenced by the []A) Di/dt capabilitiesB) dv/dt capabilitiesC) Junction temperatureD) static V-I characteristics and leakage current	
19. Turn on and Turn off time of transistor depends on[A) static characteristicsB) junction capacitanceC) current gainD) none of the above	
20. Which of the following are UJT Parameters and Ratings?[A) Maximum reverses emitter voltageB) Maximum interbase voltageC) Maximum peak emitter currentD) All the above	
21. The triggering circuit of a thyristor is shown in figure. The thyristor requires a gate current of 10 m guaranteed turn-on. The value of <i>R</i> required for the thyristorto turn on reliably under all conditions of <i>Vb</i> variation is [] (A) 10000 Ω (B) 1600 Ω (C) 1200 Ω (D) 800	mA, for Ω
22. An SCR having a turn ON times of 5 μ sec, latching current of 50 A and holding current of 40mA is triggered by a short duration pulse and is used in the circuit shown in figure. The minimum pulse width required to turn the SCR ON will be [] (A) 251 μ sec (B) 150 μ sec (C) 100 μ sec (D) 5 μ sec	
 23. A dc source of 100 v supplies a purely inductive load of 0.1 H. The controller is an SCR in series with source and load. If the specified latching current is 100ma then the minimum width of the gating pulse to ensure turn on of SCR would be [] A) 10µs B) 50 µs c) 100 µs d) 1 µs 24. An IGBT has three terminals called [] 	
a) Collector, Emitter and Base b) Drain, Source and Base	
Power Electronics	Page 8

c) Drain, Source and Gate d) Collector, Emitter and Gate			
25. The function of snubber circuit connected across the SCR is to a) Suppress dv/dt b) Increase dv/dt c) Decrease dv/dt d) Decrease di/dt	[]	
 26. An UJT exhibits negative resistance region: a) Before the break point b) Between peak and valley point c) After the valley point d) Both (a) and (c) 	[]	
 27. For dynamic equalizing circuit used for series connected SCRs, the choice of <i>C</i> is based on: a) Reverse recovery characteristics b) Turn-on characteristics c) Turn-off characteristics d) Rise time characteristics 	[]	
28. The frequency of the ripple in the output voltage of 3-phase semiconductor depends on:a) Firing angle and load resistanceb) Firing angle and load inductancec) The load circuit parametersd) Firing angle and the supply frequency	[]	
 29. Practical way of obtaining static voltage equalization in series connected SCRs is by the use of: a) One resistor across the string b) Resistors of different values across each c) Resistors of the same value across each SCR d) One resistor in series with each SCR 	[SCR]
 30. A resistor connected across the gate and cathode of an SCR in a circuit increases its a) <i>dv/dt</i> rating b) Holding current c) Noise Immunity d) Turn-off time 	[]
31. A Triac has three terminals viz a)Drain, source, gate b)Two main terminal and a gate terminal a)Cethe degree degree	[al]
c)Cathode, anode, gate d)None of the above	Г		1
a)In parallel b)In series	L		J
c)In inverse-parallel d)None of the above			
33. A triac is a Switch	[]
a) Bidirectional b)Unidirectional			
c)Mechanical d)None of the above			
34. The V-I characteristics for a triac in the first and third quadrants are essentially identical	to th	ose o	of
in its first quadrant	[]
a)Transistor b)SCR			
c)UJT d)none of the above			
35. A triac can pass a portion of half-cycle through the load	[]
a)Only positive b)Only negative			
c)Both positive and negative d)None of the above			_
36. A diac has terminals	[]
Power Electronics			Page 9

a)Two	b)Three		
c)Four	d)None of the above		
37. A triac has semic	conductor layers	[]
a)Two	b)Three		
c)Four	d)Five		
38. A diac has pn junc	ctions	[]
a)Four	b)Two		
c)Three	d)None of the above		
39. The device that does not have t	he gate terminal is	[]
a)Triac	b)FET		
c)SCR	d)Diac		
40. A diac has semi	iconductor layers	[]
a)Three	b)Two		
c)Four	d)None of the above		

UNIT-II PHASE CONTROLLED CONVERTERS

1. A single phase half wave circuit is one which produces number of pulses of load current during one cycle of source voltage. A) 2 B) 3 C) 6 D) 1
2. In a single phase semi converter with resistive load and for a firing angle of α , each SCR and freewheeling diode conducts respectively for [] A) α ,0 ⁰ B) Π - α , α C) Π + α , α D) Π - α ,0 ⁰ 3. In a single phase semi converter if output voltage has peak and average value of 325V and 133V respectively, then the firing angle is [] A) 40 ⁰ B) 140 ⁰ C) 73.40 ⁰ D) 80 ⁰
 4. Freewheeling diode is also know as A) commutating diode B) fly wheel diode C) by pass diode D) all the above 5. A single phase fully controlled converter bridge is used for electrical braking of a separately excited dc motor. The dc and the phase fully controlled to motor.
motor load is represented by an equivalent circuit as shown in the figure Assume that the load inductance is sufficient to ensure continuous and ripple free load current. The firing angle of the bridge for a load current t of $I_0 = 10$ A will be (A) 44^0 (B) 51^0 (C) 129^0 (D) 136^0
 6. When the firing angle α of a single phase fully controlled rectifier feeding constant dc current into a load is 30⁰, the displacement power factor of the rectifier is [] (A)1 (B) 0.5 (C)1/V3 (D)V3/2
 7. What is the maximum output voltage of a 3-phase bridge rectifier supplied with line voltage of 440V? A) 528V B)396V C)594V D)616V
8. In a three phase semi converter, for firing angle less than are equal to 60^{0} , freewheeling diode conducts for [] A) 90^{0} B) 60^{0} C) 30^{0} D) 0^{0}
 9. The circuit in figure shows a 3-phase half-wave rectifier. The source is a symmetrical, 3-phase four-wire system. The line-to - line voltage of the source is 100 V. The supply frequency is 400 Hz. The ripple frequency at the output is [] (A) 400 Hz (B) 800 Hz (C) 1200 Hz (D) 2400 Hz
10. Single full wave midpoint Thyristor converter uses a 230/200v transformer with center tap on the secondary side. The P.I.V per Thyristor is []

			Ql	JESTION B	ANK	20	16
(A) 40^0	(B) 140 ⁰	(C) 50 ⁰	(D) 130 ⁰				
11. Each thyristor of a 3\u00f6 half-wA) 60⁰	ave controlled B) 120 ⁰	l rectifier conduc C) 1	ts for 80 ⁰	D) 90 ⁰	[]	
12. A converter which can opA) 1-φ full converterC) 3φ semi converter	erate in both 3 B) 3\phi half w D) 3\phi full co	pulse and 6 puls vave converter onverter	se modes is a		[]	
13. The effect of source induc converters is toA) Reduce the ripples in tC) Reduce the output volta	ctance on the p he load currer ge	erformance of si nt B) Make disc D) Increase th	ngle-phase and ontinuous curre ne load voltage	three phase full ent as continuous	[]	
14. A three phase fully contro free load current of 10 A a (%THD) and the rms value (A) 31% and 6.8 A (C) 66% and 6.8 A	olled bridge o at a firing ang e of fundame	converter is fee Jle of 30 ⁰ . The a ntal componen	ding a load dra approximate T t of input curr (B) 31% (D) 66%	awing a constant otal harmonic Di ent will respectiv 6 and 7.8A 6 and 7.8 A	t and rip istortion vely be	ple I []
15. In circulating – current typeA) alternating	of dual conve B) pulsating	erter, the nature of C) d	of voltage across lirect D)	s reactor is Triangular	[]	
 16. In a 3¢ full converter, the si A) 30° B) 90 17. A single-phase fully contraction 25° and an overlap angle power factor (displacement) 	x SCRs are fir ⁰ C) 12 colled thyriste of 10c with co ent factor) at	ed at an interval 0 ⁰ D) or bridge ac-dc onstant dc outp input ac mains	of 60 ⁰ converter is o but current of is	perating at a firi 20 A. The funda	[ng angle mental [] e of 1	
 (A) 0.78 (A) 0.78 (A) 18. A six pulse thyristor recting source. Assuming that the frequency harmonic com (A) 100 Hz (B) 100 Hz 	B) 0.827 fier bridge is e dc output c ponent in the 150 Hz (C)	(C) 0.866 connected to a urrent of the re a c source line 250 Hz (D) 3	(D) 0.9 balanced 50 l ectifier is cons current is 00 Hz	Hz three phase a tant, the lowest	c []	
 19. For a single phase ac to d following conditions shot A) Half controlle B) Half controlle C) Full controlled D) Full controlled 	lc controlled uld be satisfie d bridge, $\alpha < 9$ d bridge, $\alpha > 9$ d bridge, $\alpha < 9$ d bridge, $\alpha < 9$	rectifier to oper ed? 90 deg , source 90 deg , source 0 deg , source 0 deg , source o	ate in regener of emf in load of emf in load of emf in load of emf in load	ative mode, whic	ch of the []	
20. The relation between firm mode of operation is	ng angles of	anti parallel co	nverters of du	al converter in c	irculatin [ng curre]	ent
(A) $\Pi = \alpha_1 + \alpha_2$ (B) Π - 21. For full-wave rectified s	$\alpha_1 = \alpha_2$ (C) ine wave, rms	$\alpha 1 + \alpha_2 = 180^{\circ}$ s value is	0 (D) all		[]	
Power Electronics						P	age 12

QUESTION BANK 2016 1 CYCLE (a) 0.707 i_m (b) 0.6036 i_m (c) 0.5 i_m (d) 0.318 i_m . 22. For full-wave rectified sine wave, mean value is] [(a) $0.70 i_m$ (b) 0.636 i_m (c) $0.5 i_{\rm m}$ (d) $0.318 l_{m}$. 23.For full-wave rectified sine wave, form factor is [1 (a) 1.5 (b) 1.41 (c) 1.28 (d) 1.11. 24. The ripple factor of a full-wave rectifier circuit compared to that of a half wave rectifier circuit without filter is ſ] (a) half of that for a half 'wave rectifier (b) less than half that for a half-wave rectifier circuit (c) equal to that of a half wave rectifier. (d) none of the above. 1 25. A thyristor equivalent of a thyratron tube is a ſ (b)Triac (a) Silicon controlled rectifier (SCR) (c) Diac (d) None of the above. 26. For single phase supply frequency of 50 Hz, ripple frequency in full wave rectifier is 1 ſ (a) 25 (b) 50 (c)100 (d) 200. 27. A rectifier is a [1 (a) Bilateral device (b) Linear device (c) Non-linear device (d) Passive device. 28. In the process of diode based rectification, the alternating input **Power Electronics** Page 13

voltage is converted into	[]
(a) an uncontrolled alternating output voltage (b) an uncontrolled direct outp	ut vol	tage
(c) a controlled alternating output voltage (d) a controlled direct output v	oltage	2
29. Explanation: Rectification is AC to DC. In DIODE biased rectification,		
control is not possible. In a half-wave rectifier, the	[]
a) current & voltage both are bi-directional		
b) current & voltage both are uni-directional		
c) current is always uni-directional but the voltage can be bi-directional or uni-directional	ection	al
d) current can be bi-directional or uni-directional but the voltage is always uni-directional but the voltage is a	ection	al
	1 .1	
30. For a certain diode based rectifier, the output voltage (average value) is given $1/2$. [$\frac{1}{2}$	by the	e equation
$1/2\pi$ [JVm sin $\omega t d(\omega t)$] where the integral runs from 0 to π	r	1
i ne recuiier configuration must be that of a	l	J
a) single phase tull wave with R load b) single phase tull wave with RL load		
c) single phase half wave with R load d) single phase half wave with RL load		
31. For a single phase half wave rectifier, with R load, the diode is reversed biased	1 from	$\omega t =$
	[]
a) 0 to π , 2π to $2\pi/3$ b) π to 2π , $2\pi/3$ to 3π		
c) π to 2π , 2π to $2\pi/3$ d) 0 to π , π to 2π		
22 In a 1 Dhage UWV diada martifian with D land the average value of land average	ia air	an ha
32. In a 1-Phase HW diode rectifier with R load, the average value of load current	18 g1v	en by
Take Input $(Vs) = Vm sin\omega t$	[]
a) Vm/R b) Vm/2R		
c) $Vm/\pi R$ d) Zero		
33. A 3phase half controlled bridge converter consists of	[]
a) 3 diodes and 6 thyristors b) 3 diodes and 3 thyristors	-	-
c) 3 diodes and 5 thyristors d) none		
34. The pulse number of a 3phase fully controlled bridge converter is	[]
a) six b)nine		
c) twelve a) three	r	1
a) average current b) average dc voltage	L]
c) average power d)none		
36.In3-φ full wave rectifier duration of pulse and thyristor conduction period are	ſ]
a) $60^{0.}120^{0}$ b) $60^{0.}60^{0}$	_	
c) 120^{0} , 60^{0} d) 120^{0} , 120^{0}		
37. A converter which can operate both in 3 pulse & 6 pulse modes is a	[]
a)Single phase tull converter b) 3 phase half wave converter	•	
	г	1
c) 5 pnase semi converter an work as		1
c) 5 phase semi converter d) 5 phase full converter 38.A three phase semi converter can work as	L	1
c) 5 phase semi converter 38.A three phase semi converter can work as a)Converter for $\alpha = 0^0$ to 180^0 c)Inverter for $\alpha = 90^0$ to 180^0 b)Converter for $\alpha = 0^0$ to 90^0 d)Inverter for $\alpha = 0^0$ to 90^0	l	1
c) 5 phase semi converter 38.A three phase semi converter can work as a)Converter for $\alpha=0^{0}$ to 180^{0} c)Inverter for $\alpha=90^{0}$ to 180^{0} 39.In a 3-phase full converter, the output voltage during overlap is equal to	ſ]

a)Zero

b)Source voltage

c)Source voltage minus the inductance drop d)average value of the conducting-phase voltages 40.A single phase diode bridge rectifier supplies a highly inductive load. The load current can be assumed to be ripple free. The ac supply side current waveform will be []

a) sinusoidal c)square b)constant dc d)triangle

UNIT-III

CHOPPERS

1. In a dc choppers, if T is the chopping period then output voltage can be controlled by	varyir	ng.
(a) T, Ton constant (b) Ton, T constant	[]
(c) T, Toff constant (d) All		
2. A step-up chopper has V_s as the source voltage and α as duly cycle. The Output volta	ge for	this
chopper is given by	[]
(a) $V_{s}(1+\alpha)$ (b) $V_{s}/(1-\alpha)$ (c) $V_{s}(1-\alpha)$ (d) $V_{s}/(1+\alpha)$	-	_
3. The conjugation of step-up chopper is used in	ſ	1
(a) dynamic braking (b) regeneration braking	L	1
(c) plugging (d) all		
4 Which chopper is the example for class –D commutation?	ſ	1
(a) Step-up chopper (b) (b) Oscillation chopper	L	L
(c) morgans chopper (d) iones chopper		
5 A shopper has V as the source voltage P as the load resistance and of the duty avail	n Ear tl	hia
S . A chopped has v_S as the source voltage, K as the load resistance and α the duty cycle abopter, rms value of α/n voltage is	ror u r	1115
chopper, rms value of 0/p voltage is	L	J
(a) αV_S (b) $\sqrt{\alpha} V_S$ (c) $V_S / \sqrt{\alpha}$ (d) $\sqrt{1-\alpha} V_S$		
6. Chopper can be used as	[]
(a) Pulse – width modulation only (b) Frequency modulation only		
(c) Amplitude modulation only (d) Both pwm and Fm	_	_
7. In d.c. chopper, the wave forms for input and output voltages are respectively	[]
(a) discontinuous, continuous (b) both continuous		
(c) both discontinuous (d) continuous, discontinuous	г	1
8. In d.c. choppers if I on is the on period and I is the chopping frequency, then output	L	J
(a) $V_S \frac{I_{on}}{c}$ (b) $V_S \frac{f}{T}$ (c) $\frac{V_S}{c} . T_{on}$ (d) $V_S . f . T_{on}$		
f I_{on} f		
9. In time ratio control (TRC) the controlled output is obtained by varying	[]
(a) $\frac{T_{on}}{T_{on}}$ (b) $\frac{T}{T_{on}}$ (c) $\frac{T}{T_{on}}$ (d) $\frac{f}{T_{on}}$		
$T \qquad T_{on} \qquad f \qquad T$		
10. For type – A chopper, V_s is the source voltage; R is the load resistance and δ is the duty cyc	le. The	
average output voltage and current for this chopper are respectively.	[]
(a) $S_{1}V_{s} = S_{1}V_{s} = (V_{s})V_{s}$		
(a) $\delta V_S, \delta(\frac{\pi}{R})$ (b) $(1-\delta)V_S, \frac{\pi}{R}$		
$V_{\rm e}$ $V_{\rm e}$ $V_{\rm e}$ $V_{\rm c}$		
(c) $\frac{1}{\delta}, \frac{1}{\delta R}$ (d) $\frac{1}{(1-\delta)}, \frac{1}{(1-\delta)R}$		
11 In the circuit shown in the figure the switch is $L=4$ A L L		
operated at a duty cycle of 0.5. A large capacitor is	3	
connected across the load. The inductor current is $20 V -$	- İ ra	nd
assumed to be continuous.	- Цто	au
The average voltage across the load and the		
Power Electronics		

 What is the value of power feedback to the supply? (a) 3 KW (b) 9KW (c)18KW (d)35KW 19. In a type-A chopper, source voltage is 100 V, d.c. on-period load RLE consists of R = 2Ω, L = 5 mH, E = 10 V. For contrivoltage and average output current for this chopper are respectively: (a) 40 V, 15 A (b) 66.66 V, 28.3 (c) 60 V, 25 A (d) 40 V, 20 A 	[] = 100 ms, off-period = 150 ms and inuous conduction average output [] 3 A	l
 20. A dc to dc transistor chopper supplied from a fixed voltage of inductive load and a free-wheeling diode. The chopper operal Without changing the value of the average dc current through the ripple content of load current, the control action needed w (a) increase the chopper frequency keeping the duty cycle const (b) increase the chopper frequency and duty cycle in equal ratio (c) decrease only the chopper frequency (d) decrease only the duty cycle 	Ic source feeds a fixed-resistive- tes at 1 kHz and 50% duty cycle. the load, if it is desired to reduce fil [] ant	
21. In case of chopper if the output voltage is greater than the ir (a)step up chopper (b)step down cho (c)jones chopper (d)oscillation cho	nput voltage then that type is [opper opper]
22. A chopper is a static device that converts (a) dc to ac (b) ac to dc (c) fixed dc to variable dc (d) fixed frequency to	o variable frequency]
23 in which chopper both voltage and current remains negative (a) class A (b) class B (c) class c (d) class	e []
24. By varying the duty cycle then the output voltage can be (a) can't be varied (b) can be varied (c) rease (c) class - c (c) clas - c (c) class - c (c) class - c (c) class - c (c) cl	[]
 (c) hood change (d) hone 25. In a dc choppers, if T is the chopping period then output vol (a) T, Ton constant (b) Ton, T constant (c) T, Toff constant (d) All 	ltage can be controlled by varying	[]
26. A step-up chopper has V_s as the source voltage and α as dul	y cycle. The output voltage for this	1
(a) V_{s} (1+ α) (b) $VS/$ (1- α) (c) V_{s} (1- α) (d) $V_{s}/$	(1+α)	J
27. The conjugation of step-up chopper is used in (a) dynamic braking (b) regeneration braking (c) plugging (d) all	ing]
 (c) plagging (d) un 28. Which chopper is the example for class –D commutation? (a) Step-up chopper (b) Oscillation chopper 		[]
(c) morgans chopper (d) jones chopper 29. A chopper has V _S as the source voltage, R as the load resistanchopper, rms value of o/p voltage is (a) α V _S (b) $\sqrt{\alpha}$ V _S	ance and α the duty cycle For this []
(c) $V_S / \sqrt{\alpha}$ (d) $\sqrt{1-\alpha} V_S$ 30. Chopper can be used as (a) PWM only (b) FM only	[]
Power Electronics		Page 18

 (c) Amplitude modulation only (d) Both PWM and FM 31. In d.c. chopper, the wave forms for input and output voltages are respectively (a) Discontinuous, continuous (b) both continuous (c)both discontinuous (d)continuous, discontinuous 32. A Step-down chopper is operated in the continuous conduction mode in steady state with a ratio D.If Vo is the magnitude of the dc output voltage and if Vs is the magnitude of dc input voltage 	[a const voltage] tant duty e,the
ratio Vo/Vs is given by	[
(a)D (b)1-D (c)1/1-D (d) D/1-D		
33. When polyphase choppers are used, the output ripple	[]
(a) decreases (b)Increases		
(c) remains the same (d) has low frequency		
34. The features of chopper drives are	[]
(a) smooth control but slow response (b) for braking only		
(c) for speed control and braking (d) none		
35.Which of the following system is preferred for chopper drives? (a) Constant frequency system (b)Variable frequency system (c) both are correct (d) none 36.Chopper controlled dc motor used in underground traction with regenerative braking, the performance of the consumption will be reduced to (a) 35-40% (b)50-60% (c) 60-70% (d) none	[ower []
37.In dc chopper, the load voltage is governed by(a) number of thyristors used in the circuit(b) duty cycle of the circuit	[]
(c) dc voltage applied to circuit (d) none 38. In case of chopper if the output voltage is greater than the input voltage then that type is (a)step up chopper (b)step down chopper (c)iones chopper (d)oscillation chopper	[]
39. A chopper is a static device that converts	ſ	1
(a) dc to ac (b) ac to dc	L	L
 (c) fixed dc to variable dc (d) fixed frequency to variable frequency 40. in which chopper both voltage and current remains negative (a) class -A (b) class -B (c) class -c (d) class -D 	[]

UNIT-IV

INVERTERS

1. If for a single phase half-bridge inverter, the amplitude of output voltage is V_s and the output power i	s P, tl	nen their
corresponding values for a single phase full-bridge inverter are	[]
(a) V_s , P (b) 2 V_s , P (c) 2 V_s , 2P (d) 2VS, 4P		
2. A single-phase full bridge inverter can operated in load commutation mode, if load consists of	[]
(a) RL (b) RLC under damped		
(c) RLC over damped (d) RLC critically lamped		
3. In single pulse modulation of pwm inverters, fifth harmonic can be eliminated if pulse width is equal	to	
(a) 30° (b) 72° (c) 36° (d) 128°	[]
4. In single-pulse modulation of pwm inverters, 3 rd harmonic can be eliminated if pulse width is equal to)	
(a) 30° (b) 60° (c) 120° (d) 150°	[]
5. In single-pulse modulation used in pwm inverters, V_s is the input D.C voltage. For eliminating third h	armo	nic, the
magnitudes of rms value of fundamental component of output voltage and pulse width are respectively		
	[]
$2\sqrt{2}$ $\sqrt{6}$ $2\sqrt{2}$ $\sqrt{6}$		
(a) $\frac{2\sqrt{2}}{\Pi}V_s, 120^0$ (b) $\frac{\sqrt{6}}{\Pi}V_s, 60^0$ (c) $\frac{2\sqrt{2}}{\Pi}V_s, 60^0$ (d) $\frac{\sqrt{6}}{\Pi}V_s, 120^0$		
11 11 11 11 11		
$0.$ A 1 Ψ full bridge v SI has inductor Load. For a constant source voltage, the current through the induct		1
(a) Square ways (b) Triangular ways (a) Stan function (d) Pulsed ways	L]
(a) Square wave (b) Inangular wave (c) Step function (d) Pulsed wave	г	1
/. which of the following statement is correct in connection with inverters?	L	J
(a). VSI and CSI both requires feedback diodes		
(b) Only CSI requires feedback diodes GTOS can be used in CSI		
(c) GTOS can be used in CSI		
(d)Only VSI requires feedback diodes.		
8. If for a single-phase half bridge inverter, the amplitude of output voltage is Vs and Out put		
power is P, then their corresponding values for a single-phase full bridge Inverter are	[]
(a) Vs,P (b) Vs/2,P/2 (c) 2Vs. 4P (d) 2Vs,P		
9. A single-phase bridge inverter delivers power to a series connected RLC load with $R=2\Omega$,		
$\omega L=8 \Omega$ for this inverter-load commutation is possible in case the magnitude of $1/\omega C$ in ohm	ns	
is	ſ	1
(a) 10 (b)8 (c) 6 (d) zero	L	1
10 In singlepulse modulation used in PWM inverters. Vs is the input dc voltage. For		
Flimination third harmonic the magnitude of rms value of fundamental component of output	ıt.	
voltage and pulse width are respectively.	г	1
	L	J
(a) $\frac{2\sqrt{2}}{Vs}$ Vs 120° (b) $\frac{4Vs}{60^{\circ}}$ (c) $\frac{2\sqrt{2}}{Vs}$ Vs 60° (d) $\frac{4Vs}{120^{\circ}}$		
$ \begin{array}{c} (a) \\ \Pi \end{array} \qquad		
11. A current source inverter is obtained by inserting a large	[]
(a)Inductance in series with dc supply (b)Capacitance in parallel with dc supply		
(c)Inductance in parallel with dc supply (d) Capacitance in series with dc supply		
12. A constant current source inverter supplies 20 A to load resistance of 1Ω to a load resistance	•	
Power Electronics	<u> </u>	Page 20
	,	. ugu 20

change to 5 Ω , then the load current (a)Remains same at 20A and the load voltage changes to 100V	[]
(b)Changes to 4A from 20A and the load voltage changes to 20A (c)Changes to 4A from 20A and the load voltage changes to 80V (d) load voltage stay at 20A and 20V respectively		
13. In case of voltage source inverter, freewheeling can be needed for the load of(a) Inductive nature(b) capacitive nature(c) resistive nature(d) back EMF nature	[]
 14. PWM switching is preferred in voltage source inverter for the purpose of (a) Controlling output voltage (b) output harmonics (c) reducing filter size (d) controlling output voltage, harmonics and filter size 	[]
15. Compare to a single phase half bridge inverter, the output power of a single – phase full- bridge inverter is higher by a factor of	r	1
(a)12 (b) 8 (c) 4 (d) 2	L]
 16. Which of the following inverter control schemes allows simultaneous control of output voltage and output frequency in a 3 phase VSI (a) SPWM scheme (b) 180 deg conduction mode 	[]
 (a) SI WW science (b) 180 deg conduction mode (c) 120 deg conduction mod (d) all of the above 17. A 3-phase voltage source inverter is operated in 180⁰ conduction mode. Which one of the following statements is true? a) both pole-voltage and line-voltage will have 3rd harmonic components b) Pole-voltage will have 3rd harmonic component but line-voltage will be free from 3rd 	[]
 harmonic c) Line-voltage will have 3rd harmonic component but pole-voltage will be free from 3rd harmonic d) Both pole-voltage and line-voltage will be free from 3rd harmonic Components 18. A PWM switching scheme is used with a three phase inverter to (a) reduce the total harmonic distortion with modest filtering (b) minimize the load on DC side (c) increase the life of the batteries (d) reduce low order harmonics and increase high order harmonics 19. In the inverter circuit shown in Fig., if the SCRs are fired at delayed angles, the frequency of the output waveform will 	ط [of]
(a) increase (b) remain the same (c) decrease (d) depend upon which SCR is fired first 20. The single pulse modulation of PWM inverters, third eliminated if pulse width is equal to [] (d) $L^{20^{\circ}}$ (e) $L^{20^{\circ}}$ (f) $L^{20^{\circ}}$ (g) $L^{20^{\circ}}$ (g	monic	can be
(a) 50° (b) 60° (c) 120° (d) None of these	he	
reference sinusoidal signal. If zero of the reference sinusoid coincides with zero/peak of the triangular carrier waves then number of pulses generated in each half-cycle are respectively	[]
(a) $(m-1)/m$ (b) $(m-1)/(m-1)$ (c) m/m (d) none of these 22. A series inverter is a device in which the commutating components are connected in	ſ	1
	L	L
Power Electronics	ł	Page 21

(a) in series	(b)narallel	(c)antinarllel	(d)nc	ne		
23. In series inverter op	perating frequency	will be increased	then the dc input s	ource will be	[]
(a)open circuite	(b)short circuited	(c)no change	(d)no	ne		
24. series inverters are	capable of produci	ng the output wa	veform ranging fro	m	[]
(a) $200HZ$ TO 100 (c) 500HZ TO 2000	(D) = (D)					
25. Main draw back of	parallel inverter is				[]
(a) it will be short circu	ited (b) oper	n circuited				
(c) core gets saturated	(d) none	; 1 1 11	· 1.	. 1		
26. Which of the follow	t frequency in a 3 n	hase VSI	s simultaneous con	trol of output	1	
(a) SPWM scheme (b)) 180 deg conduction	on mode (c) 120	deg conduction m	d (d) all of the a	above	
	,	(-)		(-)		
27. A 1 Φ full bridge V	SI has inductor Loa	nd. For a constan	t source voltage, th	e current through the	he indu	ictor
18 (a) Square wave	(b) Triangular w	ave (c) Step function	(d) Pulsed wave] 12 ΔΓ	DW/M
12.switching scheme is	used with a three r	ohase inverter to) Step function]	** 1*1
(a) reduce the total ha	armonic distortion	with modest filte	ring (b)minimi	ze the load on DC	side	
(c) increase the life of	f the batteries		(d) none	of the above		
28 The single pulse mo	dulation of PWM i	nverters, third ha	armonic can be elin	ninated if pulse wic	lth	
(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(b)60 (c) 1	20 (d)noi	ne	l]	
29.A single phase volt	age source-square	wave inverter fee	eds pure inductive 1	oad. The waveforn	n of the	load
current will be			1	[]	
(a) sinusoidal (b)rectangular	(c) trapezoida	d (d)triangu	lar		
30. A PWM switching	g scheme is used w	ith a three phase	inverter to	[]	
(a) Reduce the total	ad on DC side	n with modest m	itering			
(c) increase the life	of the batteries					
(d) reduce low order	r harmonics and inc	crease high order	harmonics			
31. The single pulse mo	dulation of PWM i	nverters,third ha	rmonic can be elim	inated if pulse		
width is equal to $(x)^{20^{\circ}}$	$(\mathbf{h}) \in 0^0$	$(a)120^{0}$		Ĺ]	
(a) 50 32 In single-pulse mod	(0)00 ulation of PWM in	(C)120 verters fifth harn	(d) none	ated if nulse-		
width is equal to				lited in pulse	1	
$(a)30^0$	$(b)72^{0}$	$(c)36^{0}$	(d) 108°	L	-	
33.In single-pluse mod	ulation of PWM in	verters, the pulse	width is 120 [°] .For a	in input voltage of	220V d	lc.the
rms value of the output	is.	inductor of is an	2011	l]	
(a) Source inductant	ce is small and load	inductance is si	nall			
(c) both source and	load inductance are	small	Inuit			
(d) both source and	load inductances an	e large				
34.In resonant pulse in	verters			[]	
(a)dc output voltage	variation is wide	(b) the fre	equency is low	or coro is minimiz	od	
35 In multiple-pulse m	odulation used in P	WM inverters th	e amplitudes of ref	erence square-way	e and	
triangular carrier wave	are respectively 1V	and 2V.For gei	herating 5 pulses pe	r half-cycle, the pu	lse wid	th
should be	- ·	C C	·	- I]	
(a)36 [°]	(b)24 ⁰	$(c)18^{0}$	(d) 12°			
Power Electronics					Pa	ge 22

36.In sinusoidal-pul sinusoidal reference harmonics are respe	se modulation, use signals are respecectively	d in PWM inverte tively 5V,1Khz tl	ers amplitude and frequences the modulation inc	uency for triang lex and order of	gular ca f signif [arrier and ficant
(a)0.2,9and 11	(b)0.4,9	and 11	(c)0.2,17,and 19	(d) none	-	-
37.Which of the fol	lowing statements	is correct in conn	ection with inverters		Γ	1
(a)Voltage sour	ce inverter and cu	rrent source inver	ter, bothe require feedb	ack diode	-	-
(b)Only current	source inverter re	quires feedback d	iodes			
(c)GTOs can be	e used in current so	ource inverter				
(d)Only VSI re	quires feedback di	odes				
38.In a constant sou	rce inverter, if freq	uency of output v	oltage is fHz, then frec	uency of voltage	ge inpu	it to
constant source inve	erter is	•]]
(a)f	(b)2f	(c)3f	(d)4f			
39.In an inverter wi	th fundamental out	tput frequency of	50Hz,if third harmoni	c is eliminated,	then	
frequencies of other	components in the	e output voltage v	vave in Hz,would be		[]
(a)250,350,500,	high frequencies	(b)5	50,250,350,500			
(c)50,50,350,55	0	(d)	None			
40.A single-phase C	CSI has capacitor C	as the load.For t	he constant source cur	rent,the voltage	across	s the
capacitor is					[]
(a)Square-wave	(b)triangular way	ve (c)step functi	on (d)none of thes	e		

UNIT-V	
AC VOLTAGE CONTROLLERS & CYCLO CONVERTERS	
 1. A Single phase voltage controller, using two SCRS in anti parallel, is be operating as a controlled rectifier. This is because (a) load is R and pulse gating is used (b) load is RL and pulse gating is used (c) load is RL and continuo's gating is used 	nd to
(d)none 2 A Single phase voltage controller feeds power to a resistance. The source voltage is 200y Vrms	
For a firing angle of 90° . the rms value of thyristor current in amperes is [] (a) 20 (b) 15 (c) 10 (d) 5	
3. Which of the statement is not correct for cycloconverter ? [] (a) step-down cycloconverter works on natural commutation []	
(b) step-up requires forced commutation(c) load commutated cycloconverter works on line commutation(d) load commutated cycloconverter requires a generated emf in the load circui	
4. In cycloconverter the output frequency is normally less than of the input Frequency. (a) $1/4$ (b) $1/3$ (c) $1/2$ (d) $1/5$ of the input Frequency.	
5. In a single phase voltage controller with RL load, the output power can be controlled if $\alpha > \Phi$ and	
(a) $(\beta - \alpha) = \pi$ (b) $(\beta - \alpha) < \pi, \beta > \pi$ (c) $\beta = \pi$ (d) $\beta < \pi$ []	
6. The circuit turn off time t_c for 1- Φ AC voltage controllers is []	
(a) π/ω (b) $(\pi-\alpha)/\omega$ (c) $(\pi+\alpha)/\omega$ (d) ω 7. A.C voltage controller is a device which converts fixed alternating voltage directly to	
without change in []	
(a) variable AC voltage, frequency (b) constant AC voltage, frequency	
8. In the case of A.C voltage regulator control range of firing angle is given as [
(a) Ο to π (b) Ο to π+α (c) Ο to π-α (d) Ο to 2π	
9. Cyclo converter converts input power atfrequency to output power atfrequency frequency frequen	ency
(a) One, different (b) One, same (c) variable, constant (d) none	
10. Step down cycloconverters works on []	าท
 11. A cyclo converter is operating on a 50 Hz supply. The range of output frequency that can be obtain with acceptable quality is (a) 0-16 Hz (b) 0-32 Hz (c) 0-64 Hz (d) 0-128 Hz 12 in the single phase voltage controller circuit shown in 	ed
the figure, for what range of triggering angle (α), the	
input voltage (V_0) is not controllable? [] (a) $0^0 < \alpha < 45^0$ (b) $45^0 < \alpha < 180^0$	

Power Electronics		Page 25
(c)variable AC voltage, p.f (d) constant AC voltage, frequency		
with out change in	[]
23. A.C voltage controller is a device which converts fixed alternating voltage directly to		
For a firing angle of 90° , the rms value of thyristor current in amperes is	[]
22. A Single phase voltage controller feeds power to a resistance. The source voltage is 200	0v Vrr	ns.
(a) load is R and pulse gating is used (b) load is RL and pulse gating is used (c) load is RL and continuo's gating is used (d) none		
as a controlled rectifier. This is because	[]
(c)paper mill drive (d) cement mill drive 21.A Single phase voltage controller, using two SCRS in anti parallel, if found to be operated	ing	
(a) compressor drive (b) machine tool drive	L	-
20. A cycloconverter – led induction motor drive is most is suitable for which one of the following?	ſ]
(a) 3 (b) 6 (c) 12 (d) 18 20 A surple converter for $\frac{1}{2}$ for $\frac{1}{2}$ (b) 6 (c) 12 (d) 18		
19. How many switches are used to construct a three – phase Cycloconverter?	[]
(c) parallel connected (d) series-parallel connected		
(a) connected back to back (b) series connected	L	T
18 A cycloconverters can be considered to be composed of two converters	ſ	1
(d) Decrease in output voltage at increased frequency		
(b) Increase in output voltage at increased frequency		
(a) Increase in output voltage at reduced frequency		
17. The quality of output ac voltage of a cyclo converter is improved with	[]
(a) Π (b) $(\pi$ - α) (c) $(2\pi$ - α) (c) 2π	L	L
16. A single phase ac voltage controller is controlling current in a purely inductive load. If t firing angle of SCR is α. What will be the conduction angle of the SCR?	he [1
(a) $N=M$ (b) $N=0$ (c) $N=M=0$ (d) $M=0$		L
rms value of supply voltage for	iais th	e 1
a.c. Voltage source. The current waveform consists alternately burst of N-complete cycle	e of	
15. An integral cycle a.c. voltage controller is feeding a purely resistive circuit from a single	e-phas	e
12.73mh inductance .the control range of firing angle will be $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$		
14. A single phase ac regulator fed from 50HZ supply feeds a load having 4Ω resistance &		
(c) 7935 W (d) 10580 W		
(a) 3968 W (b) 5290 W $230\sqrt{2}\sin\omega t \alpha = \pi/4 R = 10$	Ω Ω	
power to the resistive load. The peak power		
13. The triac circuit shown in figure controls the ac output		
(c) $90^{0} < \alpha < 180^{0}$ (d) $135^{0} < \alpha < 180^{0}$		

24. Cyclo converter converts input power at	frequency to output power at			
frequency with single stage conversion.			[]
(a) One, different (b) One, same (c) va	riable, constant (d) none		-	-
25.How many switches are used to construct a	three – phase Cycloconverter?		[]
(a) 3 (b) 6 (c)12	(d) 18			
26. A cyclo converter – fed induction motor dri	ive is most is suitable for which one of th	e		
following?			[]
(a)compressor drive (b) machine tool driv	re (c)paper mill drive (d) cement mill dr	ive		
27. In the case of A.C voltage regulator control	range of firing angle is given as]
(a) 0 to π (b) 0 to π+α (c) 0 to π-α (d) 0	to 2π			
28.In a 3-pulse cycloconverter with intergroup	reactor operating in circulating current m	ode, t	ooth P	and N
converter groups synthesize the		ĺ	1	
(a)same fundamental sinewave	(b)different fundamental sinewave	L		
(c) same fundamental cosinewave	(d)different fundamental cosinewave			
29. AC voltage regulators converters converts		[]	
(a)fixed mains voltage to fixed ac voltage	(b) fixed mains voltage directly t	o vari	able a	c voltage
without change in frequency (d) none				
30.sequence control of AC regulators is employ	yed for	[]	
(a) The improvement of power factor& reduction	on of harmonics			
(b) The reduction of power factor only				
(c) The reduction of harmonics only				
(d) the improvement of power factor & increas	e in harmonics	-	-	
31.Resonant converters are basically used to		L]	
(a) Generate large peaky voltage	(b) Reduce the switching losse			
(c) eliminate harmonic	(d) convert a square wave into a sine w	ave	1	
32. In a step-down cycloconverter commutatio	n required is	L]	
(a) formed	(d) none of these			
(c) lorced 22 The evaluation require natural or forced	(d) none of these	r	1	
(a) natural commutation in both step up an	d step down CCs	L]	
(b) forced commutation in both step-up and	1 step-down CCs			
(c) forced commutation in step-up CCs				
(d) forced commutation in step -down CC	's			
34. AC voltage regulators are widely used in	-	1		
(a) traction drives (b) fan drives	L			
(c) synchronous motor drives (d) slip power	r recovery scheme of slip-ring induction	motor		
35. An advantage of a cycloconverte is	[]		
(a) very good power factor	(b) requires few number o	f thyri	istors	
(c) commutation failure does not short circ	uit the source (d) load commutation is p	ossibl	le	
			-	-
36. In the case of A.C voltage regulator control	range of firing angle is given as		L	J
(a) 0 to π (b) 0 to π+α (c) 0 to π-α (d) 0	to 2π			
37. Cyclo converter converts input nower at	frequency to output power at			
frequency with single stage conversion				1
(a) One, different (b) One, same (c) variabl	le, constant (d) none		L	1
38. Step down cycloconverters works on		ſ	1	
(a) Resonant commutation (b) variable con	mutation (c) Load commutation (d) natu	ral co	u mmiit	ation
	(d) had		iiiiiut	
Power Electronics				Page 26

 39. A cyclo converte with acceptable (a) 0-16 Hz (b) 40. In cycloconverte 	er is operating quality is b) 0-32 Hz (c er the output fr	on a 50 Hz sup) 0-64 Hz (d equency is nor	oply. The range of c) 0-128 Hz mally less than	output frequency that can be obtained [] of the input Frequency.
(a) 1/4	(b) 1/3	(c) 1/2	(d) 1/5	