

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : LDIC(13A03701)

Course & Branch: B.Tech -

EEE Year & Sem: IV-B.Tech & I-Sem

Regulation: R13

<u>UNIT –1</u>

OP-AMP CHARACTERISTICS

- 1. Draw and explain the equivalent circuit of an operational amplifier. Give its features 10M
- 2. Draw the circuit diagram of an instrumentation amplifier using op-amp with its operation and derive the necessary expression

10M

3. (a) Suggest different methods to increase the input resistance of an op-amp. 10M

(b)What are the features of IC 741?

4. Explain in detail all the DC and AC characteristics of an ideal OP-AMP with relevant expressions

10M

- 5. With neat circuit diagram explain the working principle of IC 723 voltage regulator 10M
- 6. What is an ideal active integrator? Explain its working with neat circuit diagram. 10M
- 7. Draw the circuit and explain the working of

10M

- (a) Voltage to current converter
- (b) Current to voltage converter
- 8. (a)List the characteristics of an ideal operational amplifier.

10M

(b) What is frequency compensation and why is it required in operational amplifier? 10M

10M

9. Draw the circuit diagram of Differentiator using op-amp and explain its operation with relevant wave forms

a) What is op-amp?
2M
b) List out the ideal characteristics of op-amp
2M
c) What are the different kinds of packages of IC 741
2M
d) What are the assumptions made from ideal op-amp characteristics?
2M
e) Draw the pin configuration of IC741
2M

<u>Unit-2</u> <u>TIMERS, PHASE LOCKED LOOPS & D-A AND A-D CONVERTERS</u>

1. With the aid of functional schematic diagram of 555 timer, explain how it can be used as astable multivibrator.

10M

10.

2. (a) Explain the function of each pin of IC555 timer.

10M

- (b) Draw the block diagram of IC565 and explain its operation. 10M
- 3. (a) Draw and explain the circuit diagram of parallel comparator type ADC. 10M
 - (b) Draw and explain the circuit operation of an inverted R-2R DAC. 10M
- 4. With the help of schematic diagram of 555 timer, explain how it can be used as mono stablemultivibrator

10M

- 5. (a) Draw the block schematic of PLL and explain the operation of each block 10M
 - (b) List the applications of PLL.
- 6. (a) Draw and explain the circuit diagram of dual slope ADC 10M
 - (b) Draw and explain the internal architecture of IC 1408 DAC
- 7. (a) What are the limitations of weighted resistor type D/A converter? 10M

(b) With neat block diagram, explain successive approximation type A/D converter in detail

8. Draw the circuit diagram of Schmitt trigger using op-amp and explain its operation withrelevant waveforms.

10M

- Draw the circuit of Schmitt trigger using IC555 timer and explain its operation? 10M
- 10. a.What is a Schmitttrigger 2M
 - b.What is a bistable multivibrator 2M
 - c.Explain in brief the principle of operation of successive Approximation ADC 2M
 - d.Write the applications of V-I Converter 2M
 - e. Explain in brief stability of a converter 2M

<u>Unit-3</u> <u>ACTIVE FILTERS & OSCILLATORS</u>:

- Design a first -order low pass filter so that it has a cut off frequency of 2kHz and pass Band gain of '1'. 10M
- 2. Draw the circuit of a triangular-wave generator; explain its operation and derive expressions for frequency of oscillations?

- Design Wien bridge oscillator using op-amp and derive the necessary expression. 10M
- 4. (a) Write notes on all pass filters.

10M

- (a) Write notes on VCO
- 5. Design and draw the triangular waveform generator using op-amp and explain its operation.

1 0 M

- 6. Design RC phase shift oscillator using op-amp and derive the necessary expression. 10M
- 7. Design quadrature type oscillator using op-amp and derive the necessary expression. 10M
- 8. Design and draw the square wave generator using op-amp and explain its operation. 10M
- 9. Design and draw the saw tooth wave generator using op-amp and explain its operation. 10M
 - 10.a. Mention few advantages of filters

b.Draw the circuit for first order LPF filter using op-am

- c.Define an oscillator. What are the types of oscillators based on feedback used. 2M
- d.Define BPF and write the expression for voltage gain 2M
- e.Draw the circuit for first order HPF filter using op-amp 2M

²M

UNIT-4 INTIGRATED CIRCUITS

- 1. (a) List out the merits and limitations of integrated circuit technology? 10M
 - (b) With suitable example, explain how CMOS logic driving by TTL logic 10M
- Perform the analysis of standard TTL NAND gate and give its characteristics 10M
- 3. Explain the concept of MOS & CMOS open drain and tri-state outputs. 10M
- 4. Explain the different variations came in chip size and circuit complexity. 10M
- 5. Explain about TTL open collector outputs. 10M
- Define Moore's law and explain different classifications of integrated circuits. 10M
- 7. Give the classification of integrated circuits and compare the various logic families. 10M
- 8. What is meant by Tristate logic? Draw the circuit of Tristate TTL logic and explain the functions.

10M

- 9. (a) List out the advantages of CMOS logic 10M
 - (b) Explain the concept of CMOS transmission gate.
- 10. a.What are the classifications of integrated circuits

- b.Write any two comparisons of all the logic families 2M
- c.What are the stages in TTL NAND gate structure 2M
- d.Write few characteristics of TTL NAND gate 2M

e.Draw the structure of open collector output with pull-up resistor 2M

<u>UNIT-5</u> <u>COMBINATIONAL & SEQUENTIAL CIRCUITS</u>

- (a) Construct a full adder circuit using two half adders and basic logic gates. 10M
 - (b) Draw the circuit diagram of a 4-bit ripple carry adder using 4 full adder circuit blocks.
- 2. (a) Explain with suitable example how binary multiplication can be performed using shift and add method?

- (b) Design and draw the circuit diagram of decade counter and explain its operation
- (a) With the help of logic diagram of a 4-bit adder/subtractor for adding or subtracting two numbers of arbitrary signs, using 1's complement and explain its working?
 10M
 - (b) Design a 4-bit parallel full adder with look ahead carry scheme?
- 4. (a) Design a 3 input 5-bit multiplexer? Write the truth table and draw the logic diagram? 10M
 - (b) Design a full subtractor with logic gates?

- (a) Give the design considerations of 2×4 decoder and explain the operation with relevant circuit Design a parallel binary adder circuit using 2's complement system.
 10M
 - (b) Design a 4-bit bidirectional shift register with parallel load
- 6. (a)Write short notes on Ring Counter and Johnson counter.

10M

- (b) Design a conversion circuit to convert a D flip-flop to J-K flip-flop?
- 7. (a) Give the design considerations of parity encoder and explain the operation with relevant circuit.

10M

- (b) Design a parallel binary subtractor circuit using 2' s complement system.
- 8. Write short notes on the following:

10M

- a. Level triggering.
- b. Edge triggering.
- c. Pulse triggering
- d. Explain the RS flip-flop using NAND gates?
- 9. (a) Design a conversion circuit to convert a D flip-flop to J-K flip-flop? 10M
 - (b) What is meant by a transparent latch?

10.a.What are the different types of code converters

2M

b.Define decoder and encoder

2M

c.Define mux and demux

2M

d.Draw the pin configuration of decoder used for driving LED and LCD display 2M.

Page 7

e.Define priority encoder and its significance

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : LDIC(13A04508) Year & Sem: III-B.Tech & I-Sem **Course & Branch**: B.Tech – EEE Regulation: R13

<u>UNIT-1</u> **OP-AMP CHARACTERISTICS**

1. IC-741 op-amp has typical gain of in dB []
(a) 110 dB (b) 100 dB (c) 106 dB (d) 90 dB 2. Ideal terminal conditions of IC-op-amp are []
(a) $V_d = \infty$, $V_0 = 0$, $i_P = i_N = 0$. (b) $V_d = 0$, $V_0 = \infty$, $i_p = i_N = \infty$ (c) $V_d = 0$, $V_0 = 0$, $i_P = 0$, $i_{N=}\infty$ (d) $V_d = 0$, $V_0 = 0$, $i_P = \infty$, $i_{N=0}$ 3.The differential mode and common mode voltage is defined as []
(a) $V_{DM} = V_2 - V_1$, $V_{CM} = V_1 + V_2/2$ (b) $V_{DM} = V_1 + V_2/2$, $V_{CM} = V_2$ (c) $V_{DM} = V_1/2 = V_2/2$, $V_{CM} = V_2 - V_1/2$ (d) none of the above	$-\mathbf{V}_{1}$
4. The ideal input impedance range of op-amp is []
(a) $1 \ k\Omega$ (b) $10 \ k\Omega$ to $10^6 \ m\Omega$ (c) $10^6 \ m\Omega$ to $10^{12} \ m\Omega$ (d).None 5.Which of the following amplifier compensates for drift? []
(a) Low gain amplifier(b) High gain amplifier(c) DC amplifier(d) Differential amplifier	
6.An ideal amplifier should have []
(a) infinite gain at all frequencies(b) large bandwidth(c) zero phase shift7.An amplifier is an unstable condition when	(d) all of the above]
 (a) gain is low (b) load is variable (c) phase shift is 180° (d) supply 8.Noise in op-amp can be reduced to 	y is rectified DC]
 (a) shielding (b) use lpf (c) proper grounding (d) all of the above 9. Aamplifier amplifies the difference between two input signals. [(a) Differential amp (b) Inverting amp (c) Non Inverting amp(d) none 10. The second state of OP_AMP consists of dual input output]

LINEAR & DIGITAL IC APPLICATIONS

differential amplifier (a) Balanced 11.A monolithic circu	(b) Unbalanced uit means	(c) Single	[(d) dual []	
(a) circuit from single (c) uses double price	e crystal (b) circuit from more of crystal to form a circuit	e than one cryst (d) none of th	tal ne above		
12.The CMRR of MA	A 741 is		[]	
(a) 70 db (b) 50 13.The basic element	db (c) 40 db (d) no s of op-amp is	one	[]	
(a) differential amplit(d) all of the above	fier (b) buffer, level trans	slator (c) ou	ıtput driver		
14.Differential gain c	can be expressed as		[]	
 (a) A_d= Vo/Vd 15. For an ideal common mode gain r (a) zero, infinite 	(b) A _d = Vo/Vd (c) A _d differential amplifier, th nust be (b) infinite, infinite (c) ze	_l = Vo/Vd e differential ro. zero (d) in	(d) none gain must [finite, zero	be]	_ while
16.Common mode	rejection ratio can be expresse	ed as	[]	
(a) CMRR= Ac/Ad (17. The differential a	(b) CMRR= Ad/Ac (c) CMR mplifier can be operated in	R= Vc/Vd (d	l) CMRR= Vd [/Vc]	
(a) Differential mode 18. DC character of c	(b) Common mode	(c) Both	(d) none []	
(a) input bias and off	set current (b) input offset vo	ltage (c) therm	al drift		
19. A current mirror	can be used as an active load	because it has	[]	
(a) low resistance (b) high ac resistance (c) low ac	resistance (d)	high dc resista	ance	
20.The slew rate for	IC 741 is		Ĺ]	
(a) 0.5 V/µs	(b) $0.9 \text{ V/}\mu\text{s}$ (c) 0.3	8 V/µs	(d) 1 V/µs		
21.Op-amp 741C car (a) low slew rate	not be used for high frequenc (b) high slew rate	y applications	because []	
22.DC analysis mean	s to obtain the operating value	es of	[]	
(a) Icq and Vce (c) O.T. V/QS	(b) Ibq and Vbe(c) Icd(d) none of the above	q and Vbe	(d) none		

QUEST	ION BA	NK 2016
23. AC analysis of Differential amplifier can be find using	[]
(a) h-parameters (b) r-parameters (c) both (d) z-para	meters	
24. Differential amplifier iscoupled amplifier]	1
	L	-
(a) emitter (b) direct (c)cascode (d) none		
25. Level shifter of op-amp should haveinput impedance	[]
(a) zero (b) infinite (c) not defined (d) none	r	1
26. Military grade op-amp be operated in the temperature range of $(a) = 55$ to 120° C (b) = 50 to 150° C (c) 0 to 100° C (c) at 20°		J
(a) = 55 to 120 C $(b) = 50 to 150 C$ $(c) 0 to 100 C$ $(c) at 50 C$	C	output is
(a) zero output resistance (b) infinite output resistance	r r	
(c) high output resistance (d) none	L	J
28. Open loop operation of op-amp has output	Г	1
open roop operation of op and mes output	L	L
(a) + V_{sat} (b) - V_{sat} (c) - V_{sat} - V_{sat} (d) $V_{sat} = 0$	
29. The input offset voltage of the practical Op-amp in the order of the	ne[]
(a) $1mV$ (b) $10mV$ (c) $100mV$ (d) none	<u> </u>	-
30. Input impedance of DIBO-DA is	[1
	-	_
(a) $2\beta_{ac}r_{e}$ (b) $2\beta_{ac}/r_{e}$ (c) $\beta_{ac}r_{e}$ (d) β_{ac}/r_{e}		
31.Voltage gain of SIBO-DA is	[]
(a) $\mathbf{R}_c / 2\mathbf{r}_e$ (b) $\mathbf{R}_c \times 2\mathbf{r}_e$ (c) $\mathbf{R}_c / \mathbf{r}_e$ (d) $\mathbf{R}_c \times \mathbf{r}_e$		
32. level shifter is used to bring DC level down to level	[]
(a) zero (b) infinite (c) not possible (d) none		
33. Open loop operation of op-amp has output	[]
(a) zero (b) infinite (c)not defined (d) none		
34. Voltage gain of DIBO-DA is	[]
(a) $R_c / 2r_e$ (b) $R_c \times 2r_e$ (c) R_c / r_e (d) $R_c \times r_e$	-	1
35. For large CMRR, A_{CM} should be]
(a) High (b) Low (c) Both (d) Not defined	г	1
so. The gain of an op-amp decreases at high frequency due to	L]
(a) Input offset voltage (b) bias current (c) slew rate (c	1) none	
(a) input onset voltage (b) bias current (c) sign fall (c) 37 . The input bias current of the practical On-amp in the order of the		1
(a) $40nA$ (b) $60nA$ (c) $80nA$ (d) none	L	L
38. A differential amplifier amplifies the between two input		
signals.	1	1
a) addition b) subtraction c) multiplication d) both b and c	L	L
39. Noise of input signal in differential amplifier	ſ	1
	•	-

[

]

- a) increasesb) decreasesc) remains the soul d) none40. Cascaded differential amplifier requires level translator because of
- a) impedance matching b) isolating each stage c) d.c.shift d) none

<u>UNIT-2</u> <u>TIMERS, PHASE LOCKED LOOPS & D-A AND A-D CONVERTERS</u>				
1. The duty cycle of a symmetric square worm of astable is	[]			
 A). R_B/(R_A+ R_B) B). R_A/(R_A+2 R_B) C). R_B /(R_A+2 R_B) 2. The out put frequency of a symmetric square worm of astable is A). 1.45/(R_A+ 2R_B)C B). 1.45/(R_A+ R_B)C C). 1.45/(R_A-3. Voltage to frequency conversion factor K_v of a VCO is defined as A). ΔVc/Δfo B). ΔVc. Δfo C). Δfo/ΔVc 4. Voltage to frequency conversion factor K_v of a VCO is 	D). none [] R_B)C D). none [] D). $\Delta Vc+ \Delta fo$ []			
A). 6fo/Vcc B). 7fo/Vcc C). 8fo/Vcc D). none5. Which Multivibrator does not require a input (Clock pulse or other).	[]			
A) Monostable MV B) Bistable MV C) ASTABLE MV D) AI	L			
6. The output frequency of a FSk generator is []			
A). 10/0-1200 Hz B). 10/0-12/0 Hz C). 1000-12/0 Hz	D).none			
A) 25% B) 50% C) 75% D) 100	L J)%			
8. The $V_{I,TP}$ and $U_{I,TP}$ OF Schmitt trigger is				
A). 1/3Vcc,1/2Vcc B). 2/3Vcc,1/2Vcc C). 1/3Vcc,2/3Vcc D). non	e			
9. Application of monostable multivibrator is	[]			
A). PWM B). Linear ramp C). frequency divider	D).all			
10is applied to make the output is voltage is zero	[]			
A). Threshold B). Discharge C). reset D).all				
11multivibrator having two quasi stable states	[]			
A). astableB). mono stableC). bistable	D).none			
12 detector I better capture and locking characteristics as the	e DC outpt voltagae iss			
linear up to 360°				
A). X-OR B). RS flip flop C). both	D). none			
13. Which one is true in the locking or tracking range $A = \begin{cases} f_1 & f_2 \\ f_3 & f_4 \\ f_4 & f_5 \\ f_5 & f_5 \\ f_6 & f_6 \\ f_$				
A). IS = IO B). IS \pm IO C). IS /IO D). all	г 1			
A) Free multiplication B) Free translation C) AM detection	[] D) all			
15 The error voltage for analog phase detector Ve is				
A). $K_{\alpha}(\omega - \pi)$ B). $K_{\alpha}/(\omega - \pi)$ C). $K_{\alpha}(\omega - \pi/2)$ D). $K_{\alpha}/(\omega - \pi)$				
16. The pulse width of the mono stable multivibrator is	[]			
A). 0.69RC B). 0.45RC C). 1.1 RC D). none				
17. The output frequency fo of VCO is given by	[]			
A). $0.25/R_T C_T$ B). $0.5/R_T C_T$ C). $1/R_T C_T$ D). none				
18. Conversion ratio of the phase detector of 565IC PLL is K_{\emptyset} =	[]			
A).0.7/II B). 0.3/II C). 1.4/II D). 0.6/II				
19. The phase shift φ should be inn locked state is	[]			
LINEAR & DIGITAL IC APPLICATIONS Page 12				

QUESTION BANK 2016 A). 90° B). 180° C). 270° D). 360° 20. At what phase angle of φ the fo should deviate from centre to the right side in proportional to the error voltage D). 90° A). 0° B). 180° C). 270° 21. At what phase angle of φ the fo should deviate from Centre to the right side in proportional to the error voltage 1 A). 0° B). 180° C). 270° D). 90° 22. The output frequency of the phase detector is] L C). both A&B D). 90° A). sum B). difference 23.___ ____ logic gate is used to perform the digital phase detection ſ 1 A). nand B). nor C). X-NOR D). X-OR 24. The output of Schmitt trigger is 1 ſ (a) square waveform (b) triangular waveform (c) sine waveform (d) cos waveform 25. The other name of Schmitt trigger is 1 Γ (a) regenerative comparator (b) square wave generator (c) backlash circuit (d) all 26. The total time period of the pulse from monostable multivibrator is ſ 1 (a) T = 2 RC(b) T = 0.3 RC(c) T = 0.69 RC(d) $T = RC \ln (1 +$ $V_D/V_{sat})/1-\beta$ 27. The single output pulse of adjustable time direction in response to triggering signal is from circuit.] (a) astable multi (b) monostable multi (c) bistable multi (d) none 28. The other name of a stable multivibrator is Γ] (a) Schmitt trigger (b) free running oscillator (c) regenerative comparator (d) none 29. The frequency of oscillation of triangular waveform from generator using op-amp (a) $R_3/4R_1C_1R_2$ (b) $R_2/4R_1C_1R_3$ (c) $R_1/4R_3C_1R_2$ (d) none 1 30.A comparator is _____ and gives _____ output. 1 Γ (a) Open loop op-amp, Analog output (b) Open loop op-amp, No output (d) Closed loop op-amp, Digital output (c) Open loop op-amp, Digital output 31.Schmitt trigger is comparator _____ feedback. ſ 1 (c) negative feedback (d) none (a) no feedback (b) positive feedback 32.A triangular wave can be generated by integrating ſ 1 (a) cosine waveform (b) sine waveform (c) ramp waveform (d) square waveform 33. The application of open-loop operation of op-amp is] ſ

(a) zero crossing detector (b) square way	re generator (c) comparator (d) all
34. The input offset voltage of the practical	Op-amp in the order of the[]
(a) $1mV$ (b) $10mV$ (c) $100mV$	(d) none
35. The gain of an instrumentation amplifier	is varied by a single []
(a) Resistor (b) Capacitor (c) Inductor	(d) all
36. An Op-amp current to voltage converter	is also called as []
(a) Current amp (b) voltage am	p (c) frequency amp (d) none
37. An active integrator may be used to conv	ert a square wave into awave
(a) sine (b) cos (c) trian	ngular (d) none []
38. The application of op-amp in non-linear r	egion is []
(a) comparators (b) detectors	(c) limiters (d) all
39. The gain of the Inverting amplifier is	[]
(a) $A_{0} = P_{0} P_{0}$ (b) P_{0} / P_{0} (c) [1]	
(a) $ACI = -K_f \times K_i$ (b) $-K_f / K_i$ (c) $[1+]$	R_{f}/R_{i}] (d) [1+ R_{f}/R_{i}]
40. The gain of the Non inverting amplifier_	R_{f}/R_{i}] (d) [1+ R_{f}/R_{i}] []

(a) Acl = $-R_f \times R_i$ (b) $-R_f / R_i$ (c) $[1+R_f / R_i]$ (d) $[1+R_f / R_i]$

1

ſ

<u>UNIT-3</u> ACTIVE FILTERS & OSCILLATORS

1. A ______ filter rejects all frequencies within a specified band and passes all those outside this band.

A. low-pass B. High pass C. band pass D. band stop [] 2. Filters with the _____ characteristic are useful when a rapid roll-off is required because it provides a roll-off rate greater than -20/dB/decade/pole.

a. Butterworth b. Chebyshev c. Bessel d. none [] $3. A_{------}$ filter significantly attenuates all frequencies below f_c and passes all frequencies above f_c .

A. low-pass B. High pass C. band pass D. band stop [] 4. The gain of the multiple-feedback band-pass filter above is equal to which of the following? Assume $C = C_1 = C_2$.

a. $A_0 = R_2 / R_1$ b. $A_0 = R_1 / R_2$ c. $A_0 = R_2 / 2R_1$ d. $A_0 = R_1 / R_2$] 5. Refer to the given figure. This circuit is known as a _____ filter, and the f_c is []

a. high-pass, 1.59 kHz
b. band-pass, 15.9 kHz
c. low-pass, 15.9 kHz
d. high-pass, 15.9 kHz
6. The bandwidth in a ______ filter equals the critical frequency

a. low-pass b. high-pass c. band-pass d. band-stop

7. Filters with the _____ characteristic are used for filtering pulse waveforms

a. Butterworth b. Chebyshev c. Bessel d. none

8. The critical frequency is defined as the point at which the response drops ______ from the passband.

a. -20 dB b. -3 dB c. -6 dB d. -40 dB [] 9. Filters with the _____ characteristic provide a very flat amplitude in the passband and a roll-off rate of -20 dB/decade/pole.

A. low-pass B. High pass C. band pass D. band stop 12. Only the condition $\beta A =$ must be satisfied for self-sustained oscillations to result. a. 0 c. 1 d. none b. -1 1 13. At what phase shift is the magnitude of β A at its maximum in the Nyquist plot? b. 270° c. 180° d. 0° a. 90°] 14. Which of the following improvements is (are) a result of the negative feedback in a circuit? 1 a. Lower output impedance b. Reduced noise c. More linear operation d. all 15. The feedback signal in a(n) ______ oscillator is derived from an inductive voltage divider in the LC circuit. Γ 1 d. wien bridge a. Hartley b. Armstrong c. colpits 16. The attenuation of the three-section RC feedback phase-shift oscillator is 1 ſ a. 1/9 b. 1/30 c. 1/3 d. 1/29 17. advantages of filters 1 a. reduction in size d. all of the above b. less cost c. easy tuning 18. types of oscillators based on circuit components 1 c. high freq osci a. RC b. audio freq osci d. feedback osci 19. in RC circuit voltage across resistance is of _____phase shift 1 ſ a. 90° b. 270° c. 0° d. 180° 20. For a phase-shift oscillator, the gain of the amplifier stage must be greater than[1 b. 29 c. 30 d. 1 a. 19 21. Which of the following is (are) the determining factor(s) of the stability of a feedback amplifier? 1 a. Phase shift between input and output signals b. A c. Both A and the phase shift between input and output signals d. none 22. What is the minimum frequency at which a crystal will oscillate? ſ 1 d.2nd harmonic a. 7th harmonic b. third harmonic c. fundamental harmonic 23. An amplifier with a gain of -500 and a feedback of $\beta = -0.1$ has a gain change of 15% due to temperature. Calculate the change in gain of the feedback amplifier. Γ 1 a.0.2% b. 0.3% c. 0.4% d. 0.5% 24. the RC feedback network produces a phase shift of ſ 1 a. 90° b. 270° c. 0° d. 180° 25. quadrature oscillator has a phase shift of 1 ſ c. 0° a. 90° b. 270° d. 180° 26. triangular wave generator can be formed by cascading ſ 1 a. integrator-differentiator b. integrator-square wage g/r d. differentiator-integrator c. square wage g/r- integrator 1 a. sine c. triangular d. cosine b. square wave 28. which of the following has unequal rise and fall times ſ 1 a. sawtooth c. square b. sine d. triangular 29. which of the following may fall negatively many times faster than it rises positively

QUESTION BANK 2016 d. triangular a. sawtooth b. sine c. square ſ] 30. which of the following classified as astable multi vibrator ſ 1 d. triangular a. sawtooth b. sine c. square 31. an oscillator by which frequency of oscillations can be controlled by an externally applied voltage is called..... a. RC osci b. LC osci c. VCO d. wien bridge osci 32. The feedback signal in a(n) ______ oscillator is derived from a capacitive voltage divider in the LC circuit. ſ 1 a. Hartley b. Armstrong c. colpits d. wien bridge 33. filters are classified as 1 ſ b. passive c. both a and bd. none a. active 34. Which of the following is required for oscillation? 1 a. $\beta A > 1$ b. The phase shift around the feedback network must be 180° C. both a and b d. none 35. A circuit that can change the frequency of oscillation with an application of a dc voltage is sometimes called a. VCO B. hartely c. colpitts d. wien bridge 36. In order to start up, a feedback oscillator requires 1 ſ b. positive feedback greater than 1. C.unity a. negative feedback less than 1. feedback equal to 1. D. no feedback. 37. What is the ratio of the input impedance with series feedback to that without feedback? b. ^βA с. ^β a. 1 + ${}^{\beta}A$ d. 1 1 ſ 38. Which of the following oscillators is (are) tuned oscillators? 1 b. colpitts c. wien bridge d. all of the above a. hartely 39. What is the ratio of the output impedance with series feedback to that without feedback? a. 1 + ^βA c. β b. ^βA d. 1 1 40. One condition for positive feedback is that the phase shift around the feedback loop must be 1

a. 90° b. 270° c. 0° d. 180°

<u>UNIT-4</u> INTIGRATED CIRCUITS:

1. The range of Voh min in cmos	circuit is	[]	
a) Vcc-0.7v b)Vcc-0.1v c) V	/cc-0.6v d)Vcc-0.2v		
2.Low output of TTL is in betwee	en	[]	
a)2 to 5 b)2 to 3	c)0 to 0.8 d)0 to 2		
3.TTL output stage is called		[]	
a)Totempole b)Push bac	k c)Pull back d)Pull d	lown	
4.In bipolar logic familytype	of transistor operates fastly	[]	
a)Npn b)Pnp c)Se	chottky transistor d)Cc transistor		
5.V-gamma voltage of Schottky tr	ransistor	[]	
a)0.25 b)0.6 c)0.	.3 d)0.4		
6.The negative leakage current flo	ow in diode when it is	[]	
a)Forward biased b)R	eversed bias c)Short circuit	d)Constant	
7.In transistor logic familyre	gion works as binary 1	[]	
a)Cut off region b)A	ctive region c)Saturation reg	gion	
d)Break down region			
8.We can also call transistor as	diodes connected	[]	
a)Back to front b)B	ack to back C)Front to back d)From	nt to front	
9.Basically the single stage CE tra	ansistor act as logic circuit	[]	
a)Multiplexer b)Inverter	c)Differentiator	d)Decoder	
10. The 74F family is positioned b	betweenandin the speed/powertr	ade off	
		[]	
a)7487418 b)7418 74			
a)/45,/4L5 $b)/4L5,/4$	(AS C)/4S,/4AS C)/4AS	,74ALS	
11. The original TTL family of log	gic gates was introduced byin 1963	,74ALS []	
a)/45,/4L5 b)/4L5, /4 11.The original TTL family of log a)Paul b)Leach	gic gates was introduced byin 1963 c)Sylvania d)Goutham sah	,74ALS [] a	
a)/45,/4L5 b)/4L5, /4 11.The original TTL family of log a)Paul b)Leach	c)Sylvania d)Goutham sah	,74ALS [] a	
 a)/45,/4LS b)/4LS, /4 11.The original TTL family of log a)Paul b)Leach 12.Speed power product units use 	c)Sylvania d)Goutham sah	,74ALS [] a []	
a)/43,/4LSb)/4LS, /411.The original TTL family of loga)Paulb)Leach12.Speed power product units usea)Nsb)Mwc)Pg	and the family given and the family and the family and the family for the family family for the family f	,74ALS [] a []	
 a)/45,/4LS b)/4LS, /4 11.The original TTL family of log a)Paul b)Leach 12.Speed power product units use a)Ns b)Mw c)Pj 13.Power consumption per gate u 	 AS C)/4S,/4AS d)/4AS gic gates was introduced byin 1963 c)Sylvania d)Goutham sah ed in 74ALS family j d)V nits used in 74F family 	,74ALS [] a [] []	
a)/43,/4LSb)/4LS, /411.The original TTL family of loga)Paulb)Leach12.Speed power product units usea)Nsb)Mwc)Pj13.Power consumption per gate ua)Nsb)mwc)Pj	 AS C)/4S,/4AS d)/4AS gic gates was introduced byin 1963 c)Sylvania d)Goutham sah ed in 74ALS family j d)V nits used in 74F family j d)Watts 	,74ALS [] a [] []	
a)/43,/4LSb)/4LS, /411.The original TTL family of loga)Paulb)Leach12.Speed power product units usea)Nsb)Mwc)Pj13.Power consumption per gate ua)Nsb)mwc)Pj14.More power consumption press	 AS C)/4S,/4AS d)/4AS gic gates was introduced byin 1963 c)Sylvania d)Goutham sah ed in 74ALS family j d)V nits used in 74F family j d)Watts sent from following family 	,74ALS [] a [] []	
a)/43,/4LSb)/4LS, /411.The original TTL family of loga)Paulb)Leach12.Speed power product units usea)Nsb)Mwc)Pj13.Power consumption per gate ua)Nsb)mwc)Pj14.More power consumption pressa)74LSb)74AS	 AS c)/4S,/4AS d)/4AS gic gates was introduced byin 1963 c)Sylvania d)Goutham sah ed in 74ALS family j d)V nits used in 74F family j d)Watts sent from following family c)74ALS d)74S 	,74ALS [] a [] []	
a)/43,/4LSb)/4LS, /411.The original TTL family of loga)Paulb)Leach12.Speed power product units usea)Nsb)Mwc)Pj13.Power consumption per gate ua)Nsb)mwc)Pj14.More power consumption pressa)74LSb)74AS15.The value of IloLmax for typic	 AS c)/4S, /4AS d)/4AS gic gates was introduced byin 1963 c)Sylvania d)Goutham sah ed in 74ALS family j d)V nits used in 74F family j d)Watts tent from following family c)74ALS d)74S cal LS TTL output is exactlytimes th 	,74ALS [] a [] [] e absolute	
a)/43,/4LSb)/4LS, /411.The original TTL family of loga)Paulb)Leach12.Speed power product units usea)Nsb)Mwc)Pj13.Power consumption per gate ua)Nsb)mwc)Pj14.More power consumption pressa)74LSb)74AS15.The value of IloLmax for typic	 AS C)/4S, /4AS d)/4AS gic gates was introduced byin 1963 c)Sylvania d)Goutham sah ed in 74ALS family j d)V nits used in 74F family j d)Watts sent from following family c)74ALS d)74S cal LS TTL output is exactlytimes th 	,74ALS [] a [] [] e absolute []	
a)/43,/4LSb)/4LS, /411.The original TTL family of loga)Paulb)Leach12.Speed power product units usea)Nsb)Mwc)Pj13.Power consumption per gate ua)Nsb)mwc)Pj14.More power consumption pressa)74LSb)74AS15.The value of IloLmax for typica)10b)20c)40	 AS C)/4S,/4AS d)/4AS gic gates was introduced byin 1963 c)Sylvania d)Goutham sah ed in 74ALS family j d)V nits used in 74F family j d)Watts trom following family c)74ALS d)74S cal LS TTL output is exactlytimes th 	,74ALS [] a [] [] e absolute []	
a)/43,/4LSb)/4LS, /411.The original TTL family of loga)Paulb)Leach12.Speed power product units usea)Nsb)Mwc)Pj13.Power consumption per gate ua)Nsb)mwc)Pj14.More power consumption pressa)74LSb)74AS15.The value of IloLmax for typica)10b)20c)4016. The absolute value of IoHmax	 AS C)/4S,/4AS d)/4AS gic gates was introduced byin 1963 c)Sylvania d)Goutham sah ed in 74ALS family j d)V nits used in 74F family j d)Watts sent from following family c)74ALS d)74S cal LS TTL output is exactlytimes th 0 d)5 x is exactlytimes I in LS-TTL 	,74ALS [] a [] [] e absolute [] []	
a)/43,/4LSb)/4LS, /411.The original TTL family of loga)Paulb)Leach12.Speed power product units usea)Nsb)Mwc)Pj13.Power consumption per gate ua)Nsb)mwc)Pj14.More power consumption pressa)74LSb)74AS15.The value of IloLmax for typica)10b)20c)4016. The absolute value of IoHmaxa)10b)20c)40	AS C)74S,74AS d)74AS gic gates was introduced byin 1963 c)Sylvania d)Goutham sah ed in 74ALS family j d)V nits used in 74F family j d)Watts sent from following family c)74ALS d)74S cal LS TTL output is exactlytimes th 0 d)5 c is exactlytimes I in LS-TTL 0 d)5	,74ALS [] a [] [] e absolute [] []	
a)/43,/4LSb)/4LS, /411.The original TTL family of loga)Paulb)Leach12.Speed power product units usea)Nsb)Mwc)Pj13.Power consumption per gate ua)Nsb)mwc)Pj14.More power consumption pressa)74LSb)74AS15.The value of IloLmax for typica)10b)20c)4016. The absolute value of IoHmaxa)10b)20c)4017.Best family of following according	 AS c)/4S, 74AS d)/4AS gic gates was introduced byin 1963 c)Sylvania d)Goutham sah ed in 74ALS family j d)V nits used in 74F family j d)Watts sent from following family c)74ALS d)74S cal LS TTL output is exactlytimes th 0 d)5 x is exactlytimes I in LS-TTL 0 d)5 rding to speed power product 	,74ALS [] a [] [] e absolute [] []	
a)/43,/4LSb)/4LS, /411.The original TTL family of loga)Paulb)Leach12.Speed power product units usea)Nsb)Mwc)Pj13.Power consumption per gate ua)Nsb)mwc)Pj14.More power consumption pressa)74LSb)74AS15.The value of IloLmax for typica)10b)20c)4016. The absolute value of IoHmaxa)10b)20c)4017.Best family of following accorda)74LSb)74LS	 AS C)/4S,/4AS d)/4AS gic gates was introduced byin 1963 c)Sylvania d)Goutham sah ed in 74ALS family j d)V nits used in 74F family j d)Watts sent from following family c)74ALS d)74S cal LS TTL output is exactlytimes th 0 d)5 x is exactlytimes I in LS-TTL 0 d)5 rding to speed power product c)74ALS d)74ALS 	,74ALS [] a [] [] e absolute [] [] []	
a)/43,/4LSb)/4LS, /411.The original TTL family of loga)Paulb)Leach12.Speed power product units usea)Nsb)Mwc)Pj13.Power consumption per gate ua)Nsb)mwc)Pj14.More power consumption pressa)74LSb)74AS15.The value of IloLmax for typica)10b)20c)4016. The absolute value of IoHmaxa)10b)20c)4017.Best family of following accorda)74LSb)74LS18.Best family of following accord	 AS C)/4S,/4AS d)/4AS gic gates was introduced byin 1963 c)Sylvania d)Goutham sah ed in 74ALS family j d)V nits used in 74F family j d)Watts cent from following family c)74ALS d)74S cal LS TTL output is exactlytimes th d)5 c is exactlytimes I in LS-TTL d)5 rding to speed power product c)74ALS d)74ALS 	,74ALS [] a [] [] e absolute [] [] []	
a)/43,/4LSb)/4LS, /411.The original TTL family of loga)Paulb)Leach12.Speed power product units usea)Nsb)Mwc)Pj13.Power consumption per gate ua)Nsb)mwc)Pj14.More power consumption pressa)74LSb)74AS15.The value of IloLmax for typica)10b)20c)4016. The absolute value of IoHmaxa)10b)20c)4017.Best family of following accora)74Sb)74LS18.Best family of following accora)a74Sb)74LS	AS c)/4S, 74AS d)/4AS gic gates was introduced byin 1963 in 1963 c)Sylvania d)Goutham sah ed in 74ALS family in 1963 j d)V nits used in 74F family j d)Watts sent from following family c)74ALS d)74S cal LS TTL output is exactlytimes th 0 d)5 x is exactlytimes I in LS-TTL 0 d)5 rding to speed power product c)74AS d)74ALS rding to power consumption per gate c)74AS d)74ALS	,74ALS [] a [] [] e absolute [] [] []	
a)/43,/4LSb)/4LS, /411.The original TTL family of loga)Paulb)Leach12.Speed power product units usea)Nsb)Mwc)Pj13.Power consumption per gate ua)Nsb)Mwc)Pj14.More power consumption pressa)74LSb)74AS15.The value of IloLmax for typica)10b)20c)4016. The absolute value of IoHmaxa)10b)20c)4417.Best family of following accorda)74Sb)74LS18.Best family of following accorda)a74Sb)74LS19.In	AS c)/4S, 74AS d)/4AS gic gates was introduced byin 1963 in 1963 c)Sylvania d)Goutham sah ed in 74ALS family in 1963 j d)V nits used in 74F family j d)Watts sent from following family c)74ALS d)74S cal LS TTL output is exactlytimes th 0 d)5 c is exactlytimes I in LS-TTL 0 d)5 rding to speed power product c)74AS d)74ALS cding to power consumption per gate c)74AS d)74ALS	,74ALS [] a] [] [] e absolute [] [] [] []	

LINEAR & DIGITAL IC APPLICATIONS

A. TTL. ECL	B. CMOS. NMOS	C. CMOS.TTL	D. NMOS.TTL
20.In CMOS logic1 t	epresents		[]
A 0-1 5V	B 1 5-2 5V	C 35-5V	D 0-08V
21 In MOS transistor	has very high impeda	nce because the gate separate	s source and drain by an
material with a very	high resistance	nee because the gate separate	
A comiconductor	D insulator	Canduator	
A. semiconductor		C. conductor	
22. when current nov	ws from the power sup	ply out of the device output a	nd through the load to
ground.	~	~	
A. sourcing current	B. sinking current	C. conventional current	D. leakage
current			
23.In two input CMC	OS and gate no.of trans	istors used are	[]
A. 4	B. 2	C. 8	D. 16
24. BJT is used as			[]
A. voltage amplifier	B. Current amplifier	C. Switch	D. all of the above
25. The value of I _{IHma}	_x in LS-TTL family		[]
Α. 10μΑ	Β. 20μΑ	C. 40µA	D. 10µA
26. The value of I_{ILma}	x in LS-TTL family		[]
A. 0.4mA	B0.4mA	C. 8mA	D0.8mA
27.In TTL NAND ga	te, the diode circuit pr	oduces logic	[]
A. AND	B. NAND	C. OR	D. NOR
			2111011
27.Germanium diode	es have	cut-in voltage	[]
A)0.7	B)0.3	C)0.25	D)0.6
28.In CMOS driving	TTL the CMOS output	t V _{OH} (min) is	_ []
A)4.95V	B)3.45V	C)0V D)2.:	59V
29. In CMOS driving	g TTL the CMOS output	ut I _{OL} (max) is	_ []
A)4.95mA	B)0.45mA	C)0.12mA	D)2.59mA
30. In CMOS driving	TTL the TTL output	I _{IH} (max) is	[]
A)40uA	B)0.45uA	C)0.12uA	D)2.59uA
31. In CMOS driving	TTL the TTL output	$I_{\rm II}({\rm max})$ is	r I
A)4 95mA	B)1 6mA	$\frac{C}{12mA}$	D)2 59mA
32 The fastest Logic	family is	0)011211111	
	B)TTI	 C)DTI	
AJEWIOS	D)IIL	C)DIL	D)LCL
33. Integrated circuit	s are classified as		[]
A. SSI	B.MSI C.VL	SI D. ALL OF	THE ABOVE
34.chip size of ASIC	in the year of 2014 int	terms of mm ² is	[]
A. 800	B. 1000 C. 130	DO D. 1482	
35 which of the follo	owing family is more y	all nerable to noise	[]
A TTL	B ECL	C CMOS D DTL	
36 TTL NAND gate	consists of		[]
Δ Phase shifter	B diode and gate	C both a and b D er	L J
37 open drain output	ts are used primarily for	or	
		<u></u>	L J
LINEAR & DIGITAL IC	APPLICATIONS	Page 19	

A. driving LE	D'S B. driv	ring multi-source buses	C. performing wired logic	D. all	
38. in driving	LED'S VOL(N	MAX)İS		[]
A. 0.37V	B. 3.7V	C. 1.5V	D. 0.15V		
39. Transmiss	ion gate is ope	erated such that the signa	ls EN and EN_L are at	[]
A. LOW, LOV	N	B. HIGH, LOW	C. HIGH, HIGH		D. both b
and c					
40. Relationsh	ip between T	TL and CMOS for the pa	rameter of voltage is	[]
A. $V_{OH(MIN)} <<$	A. $V_{OH(MIN)} \ll V_{IH(MIN)}B$. $V_{OH(MIN)} \gg V_{IH(MIN)}C$. $V_{OH(MIN)} \equiv V_{IH(MIN)}D$. none				

<u>UNIT-5</u> <u>COMBINATIONAL & SEQUENTIAL CIRCUITS</u>

1.	For 74X13	39 dual 2 to 4 decode	r,011 input gives	output.	[]
a.	1011	b.1111	c.1	100 d.01	11
2.	One of the	e following is dual 2 t	o 4 decoder		[]
a.	74X130	b.74X129	c.74LS139	d.74X119	
3.		_ contains two indepe	ndent or identical 2	to 4 decoders	[]
a.	74X139	b.74X130	c.74X129	d.74X119	
4.	One of the	e following is 3 to 8 d	ecoder		[]
a.	74X130	B.74X119	C.74X36	d.74X138	
5.	74 X 138	has			[]
a.	three enab	le inputs b.two	enable inputs c.fou	r enable inputs d.one ena	ble input
6.	10011 inp	ut in seven segment o	lecodes as	output.	[]
a.	1111101	b.1011001	c.1111001	d.1111000	
7.	A seven se	egment decoder has _	as its i	nput code	[]
a.	4 bit BCD	b.6 bit excess 3	c.3 bit octa	al d.3 bit hex	
8.		is seven segmen	t decoder		[]
a.	74X138	b.74X491	c.74X149	d.74X49	
9.	Blanking	input in 74X49 is			[]
a.	Bi _ H	b.B _ L	c.E	Bi _ U	d.Bi _ L
10.	10111 inp	ut gives	output in sev	en segment decoder	[]
a.	1110000	b.1110001	c.1110010	d.1100000	
11.	00111111	1 input produce	in 74 X 14	8, 8 bit priority encoder.	[]
a.	11101	b.11001	c.10101	d.11100	
12.	XX01111	1 gives	_output in priority e	ncoder	[]
a.	10101	b.00101	c.10001	d.102	100

QUE	STION BAN	2016
13. A.Flip-Flop has 2 o/ps which are	[]
a. always 0 B.always 1 C.always complementary D.all the above14. A flip-flop can be made using	[]
A.basic gates such as AND,OR,NOT BNOR gates C.NAND gates D.any of 15. Which of the following flip-flop is used as Latch	f the above []
A.J-K flip-flop B.S-R flip-flop C.T-flip-flop D. D-flip-flop 16. A flip-flop can storedata	[]
A. one-bit B.2 bit C.3 bit D.4-bit 17. when an inverter place b/w the i/ps of S-R FF the resulting Flip-Flop is	[]
A.J-K FF B.Master-slave FF C.T-FF D.D-FF 18. which of the following input combinations is not allowed in an S-R FF A S=0 R=0 B S=0 R=1 C S=1 R=0 D S=1 R=1	[]
19. when a flip-flop is set its output will be	[]
A.Q=0,Qbar=0 B.,Q=1,Qbar=0 C.Q=0,Qbar=1 D.Q=1,Qbar=1 20. when a flip-flop is set its output will be	[]
A.Q=0,Qbar=0 B.,Q=1,Qbar=0 C.Q=0,Qbar=1 D.Q=1,Qbar=1 21. Flip-Flops can be used to make	[]
A.latches B.bounce elimination switches C.registers D.all 22. A universal register	[]
A.accepts serial i/p B.accepts parallel i/p C.gives serial and parallel o/ps 23. The transparent latch is	D.all above []
A.S-R flip-flop B.D-fliup-flop C.T-flip-flop D.J-K flip-flop 24. A shift register using flip-flop is called a	[]
A.Dynamic shift reg B.flip-flop reg C.static shift reg D.buffer shift reg 25. In sequential circuits the present input depends on	[]
A.past i/ps only B.present i/ps only C.present as well as past i/ps D.past 26. A is basic memory element	o/ps []
A.Flip-Flop B.Register C.Counter D.Encoder 27. A Flip-Flop hasstable states	[]
A.2 B.5 C.3 D.1		
LINEAR & DIGITAL IC APPLICATIONS		Page 1

		QUEST	ION BA	NK 2016		
28. Edge triggering is also called A.Dynamic B.ststic C.Low 1	astriggerin	g	[]		
29. For a J-k Flip-flop j=1,k=1 is	s theMode		[]		
A.Stable B.Toggle C.Delay D	Equal					
30. The clocked D-latch is called	dD latch		[]		
A.Clocked B.Transperant C.No	t transperant D.Normal					
31. The Register which contains	both shifts and parallel l	oad capabilitiesreg	[]		
32. a coded device which implen	nents n: 2^n function is cal	led	[]		
A. encoder B. decoder 22 In a aircuit $1x^{2n}$ functional I	C. neither A nor B	D. either A or B	г	1		
A. inputs B. outputs	C, n represents C. select lines	D. all of the above	l]		
34. functional blocks in IC HCF4	1543B are		[]		
A. latch B. decoder 35. encoder circuit is of the form	C. display driver	D. all of the above	ſ	1		
A. $n:2^n$ B. $2^n:n$	C.n:m	D. m:2 ⁿ	L	L		
36. priority encoder output for th	e combination of 'X 1 0	0", where 'X' represent	ıts don'	t care		
A. 0 1 0 B. 0 1 1	C. 0 1 0	D. 1 1 1	[]		
37. 4 Input parity checker consis	sts of how many EX-OR	gates				
A. 3 B. 4	c. 5	D. 6	[]		
38. An IC 7485 is how many bit comparator						
A. 2 B. 4	C. 8	D. 16	[]		
39. when both $S=R=1$ then SR fl	ip flop output is equals t	0	[]		
A. 1 B. 0	C. X	D. indeterminate				
40. race around condition occurs	Inflip	flop	[]		
A. JK B. D	C. SR	D. T				

Prepared by: Narasimha, A.J. Reuben Thomas Raj.