

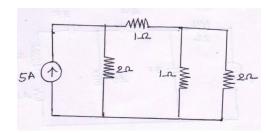
Siddharth Nagar, Narayanavanam Road – 517583

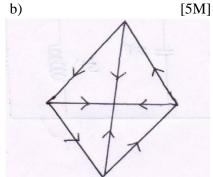
QUESTION BANK (DESCRIPTIVE)

Subject with Code : EC-II(15A02301) Course & Branch: B.Tech - EEE

Year & Sem: II-B.Tech & I-Sem **Regulation:** R15

<u>UNIT –I</u>

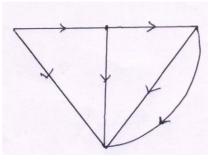

NETWORK TOPOLOGY

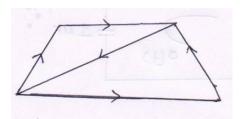

1. Find the cutset matrix for the followings?

a)

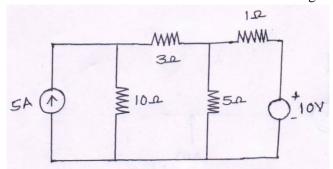
[5M]

b)

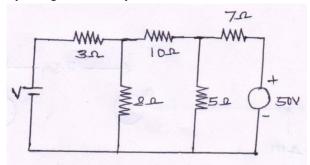

2. Find the tieset matrix for the followings?


a)

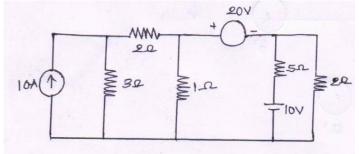
[5M]


b)

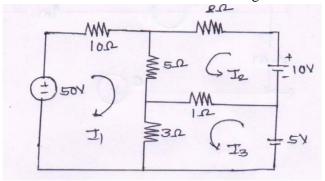
[5M]



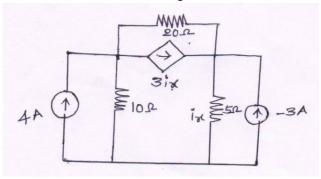
3. Determine current in 10Ω resistor for the following network by using nodal analysis. [10M]



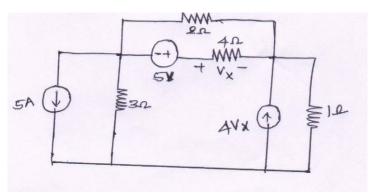
4. Find voltage V for the circuit shown in fig which makes the current in the 10Ω resistor is zero by using nodal analysis? [10M]


5. Determine current in 5Ω resistor for the circuit shown in figure.

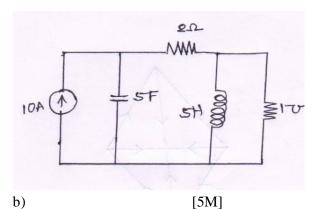
[10M]


6. Determine mesh currents for the following network.

[10M]



7. Determine i_x for the following network.


[10M]

8. For the circuit shown in figure. Find the voltage across 4Ω resistor using nodal analysis. [10M]

9. Write the procedure to draw the dual network and find dual network for the followings. [10M] [5M]

[5M] QH 2F MM 100000 22 3F 40 g

10. a) Define graph.	[2M]
b)Define planar and non-planar graph.	[2M]
c) Define duality.	[2M]

d)Define cutest. [2M]

e) Define tieset. [2M]

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : EC-II(15A02301) Course & Branch: B.Tech - EEE

Regulation: R15 Year & Sem: II-B.Tech & I-Sem

UNIT-2

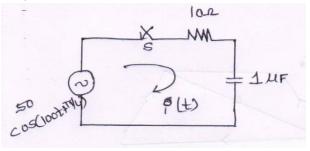
THREE PHASE AC CIRCUITS

	Derive the relationship of voltage and current in star connected load.	[10M]
2.	Derive the relationship of voltage and current in delta connected load.	[10M]
3.	A three phase balance delta connected load of (4+j8) $\boldsymbol{\Omega}$ is connected across a	$400\mathrm{V,}3\mathrm{¢}$
	balanced supply. Determine the phase currents and line currents. And also power of	drawn by
	the load. Assume RYB phase sequence.	[10M]
4.	A balanced star connected load having an impedance (15+j20) Ω per phase is connected.	ected to a
	three phase 440 V,50Hz supply. Find line currents and phase voltages. Assume RY	/B phase
	sequence and also calculate power drawn by the load.	[10M]
5.	A balanced star connected load of $(4+j3)$ Ω per phase is connected to a balanced	3¢ 400v
	supply. The phase current is 12 A. Find a) active power b) reactive power	
	c) Apparent power.	[10M]
6.	A balanced delta connected load of $(4+j3)$ Ω per phase is connected to a balanced	3¢ 440v
	supply. The phase current is 12 A. Find a) active power b) reactive power	
	c) Apparent power.	[10M]
7.	Three impedances $Z_1=20L^{30}$, $Z_2=40L^{60}$, $Z_3=10L^{-90}$ are delta connected to a	400V,3¢
	System. Determine i) phase currents ii) line currents iii) total power consumed by the	ie load.
		[10M]
8.	An unbalanced 4 wire star connected load has a balanced voltage of 400V. The	
	$Z_1=(4+j8) \Omega$, $Z_2=(5+j4)\Omega$, $Z_3=(15+j20)\Omega$. Calculate line currents, current in neutrons	
	total power.	[10M]
9.	A 400V,3¢ supply feeds an unbalanced 3 wire star connected 3 wire, star connec	
	The branch impedances of the load are $Z_R=(4+j8)\Omega$, $Z_Y=(3+j4)\Omega$, $Z_B=(5+j20)\Omega$.	
	line currents and voltages across phase impedance. Assume RYB phase sequence.	[10M]
10.	a) Write the voltage and current relationship in star connected system?	[2M]
	b) Write the voltage and current relationship in star connected system?	[2M]
	c) What are the different methods are used to solve the unbalanced systems?	[2M]
	d) Draw the star connected load.	[2M]
	e) Draw the delta connected load.	[2M]
	·	

ELECTRICAL CIRCUITS-II

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)


Course & Branch: B.Tech - EEE **Subject with Code :** EC-II(15A02301)

Year & Sem: II-B.Tech & I-Sem **Regulation:** R15

UNIT-III TRANSIENT RESPONSE

1.	Derive the transient response of an RL circuit with dc excitation.	[10M]
2.	Derive the transient response of an RC circuit with dc excitation.	[10M]
3.	Derive the transient response of an RLC circuit with dc excitation.	[10M]
4.	Derive the transient response of an RL circuit with Ac excitation.	[10M]
5.	Derive the transient response of an RLC circuit with AC excitation.	[10M]
6.	Derive the transient response of an RC circuit with AC excitation.	[10M]
7.	A series RL circuit with $R=30\Omega$ and $L=15H$ has a constant voltage $V=60V$ applied	l at t=0.
	Determine the current I, the voltage across the resistor and across the inductor.	[10M]

- 8. A series RC circuit consists of resistor of 10Ω and capacitor of 0.1F has a constant voltage of 20v is applied to the circuit at t=0.obtain the current equation. Determine the voltage across the resistor and the capacitor. [10M]
- 9. In the circuit shown in fig. Determine the complete solution for the current when switch is closed at t=0,applied voltage is $V(t)=50\cos(10^2t+\pi/4)$, resistance R=10 Ω and capacitance $c=1\mu F$. [10M]

10.a) Define steady state.	[2M]
b) Define transient state.	[2M]
c) Find the Laplace transform of the function $f(t) = 4t^3 + t^2 - 6t + 7$?	[2M]
d) Find L{ $\cos^2 t$ }?	[2M]
e) What is the transient response of RL series circuit with dc excitation?	[2M]

Siddharth Nagar, Narayanavanam Road – 517583

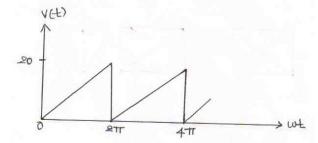
QUESTION BANK (DESCRIPTIVE)

Subject with Code : EC-II(15A02301) Course & Branch: B.Tech - EEE

Year & Sem: II-B.Tech & I-Sem **Regulation:** R15

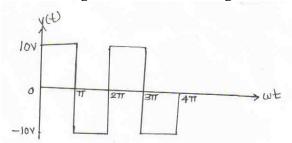
UNIT-IV FOURIER TRANSFORMS

1. Derive the trigonometric form of Fourier series.

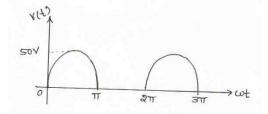

[10M]

2. Derive the exponential form of Fourier series.

[10M]


3. Find Fourier series for the following waveform shown in fig.

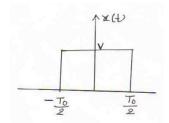
[10M]



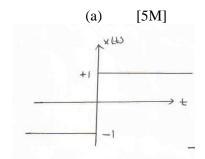
4. Find Fourier series for the following waveform shown in fig.

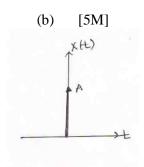
[10M]

5. Find Fourier series for the following waveform shown in fig. and plot the spectrum. [10M]

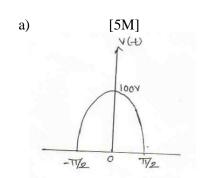


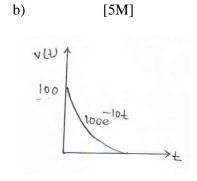
6. Write and prove the properties of Fourier transforms?


[10M]


7. Determine Fourier transform of the following waveform shown in fig.

[10M]




8. Determine Fourier transform of the following waveforms shown in fig.

9. Determine Fourier transform of the following waveforms shown in fig.

10. a) Write exponential form of Fourier series? [2M] b) Define Fourier series. [2M] c) Define Fourier transform. [2M] d) Write trigonometric form of Fourier series? [2M]e) Write any two properties of Fourier transform? [2M]

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

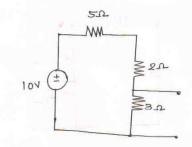
Subject with Code : EC-II(15A02301) Course & Branch: B.Tech - EEE

Year & Sem: II-B. Tech & I-Sem **Regulation:** R15

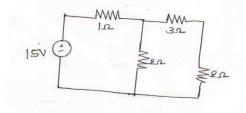
UNIT-V FILTERS AND CIRCUIT SIMULATION

1. Explain about different types of filters.

[10M]


2. Explain about constant K low pass filter.

[10M]


3. Explain about constant K high pass filter.

[10M]

- 4. Design a high pass filter having cut of frequency of 1KHz with load resistance of 600ohms. [10M]
- 5. Design a low pass filter having cut of frequency of 2KHz with load resistance of 500ohms. [10M]
- 6. Design a low pass filter having cut of frequency of 5KHz with load resistance of 800ohms. [10M]
- 7. Design K-type band pass filter having cut of frequency of 2KHz &10KHz and with load resistance of 500ohms. [10M]
- 8. Write the PS-PICE program for the circuit shown in fig. to determine voltage across the 3Ω resistor? [10M]

9. Write the PS-PICE program for the circuit shown in fig. to determine voltage across the all nodes? [10M]

10. a) Define filter. [2M]

b) Draw the RC filter. [2M]

c) Draw the RL filter. [2M]

d) What is the purpose of using .TRAN statement using in PSPICE program? [2M]

e) Define PSPICE. [2M]

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : EC-II(15A02301) Course & Branch: B.Tech - EEE

Year & Sem: II-B.Tech & I-Sem **Regulation:** R15

UNIT – I

NETWORK TOPOLOGY

1. A tree has		[]
A) A closed path	B) no closed path		
C) Path	D) none		
2. The no. of branches in tree is	than the no. of branches in a grap	h.[]
A) More	B) Less than		
C) Equal	D) None		
3. The no. of nodes in tree is	than the no. of nodes in a graph.	[]
A) More	B) Less than		
C) Equal	D) None		
4. In a plane surface, if there is no two	o branches cross each other in graph, then th	e grap	oh is
called		[]
A) Planar	B) Non-planar		
C) Both A&B	D) None		
5. Which of the following is a non-pla	anar graph?	[]
	D)		
A)	B)		
C)			
	D)		
6. Which of the following is a planar	graph?	[]
A)	B)		

Γ

Γ

ſ

1

1

]

1

1

1

]

]

1

1

C)

D)

7. In a plane surface, if two branches are cross each other in graph, then the graph is called

A) Planar

B) Non-planar

C) Both A&B

D) None

8. Planar graph has

B) no cross over branches

C) Both A&B

D) none

9. Non-Planar graph has

A) Cross over branches

A) Cross over branches

B) no cross over branches

C) Both A&B

D) none

10. Which of the following statement is correct _

A) b=e-1

B) b=n-1

C) b=n+2

D) b=1+2

11. Which of the following statement is correct _____ A) l=e-1

B) l=b-1

C) l=n+2

D) l=e-b

12. The incidence of elements to nodes in a connected graph is shown by _____matrix.[]

A) Cutset B) Tieset

- C) Incidence matrix D) None
- 13. Incidence matrix contains___ A) nodes, branches
- B) nodes, links

C) links, nodes

- D) None
- 14. The value in the matrix A is positive 1 if
- A) The element is incident to the node
- B) The element is far away to the node
- C) The element is not connected to the node D) none
- 15. The value in the matrix A is negative 1 if
- A) The element is incident to the node
- B) The element is far away to the node
- C) The element is not connected to the node D) none
- A) The element is incident to the node

16. The value in the matrix A is 0 if

- B) The element is far away to the node

- C) The element is not connected to the node D) none 17. The dimension of incidence matrix is _

18. The dimension of incidence matrix is _

[

Γ

A) nxe

B) n x b

C) n x 1

D) n x (b-1)

A) nxe

B) (n -1) x e

C) n x (e -1)

D) $(n-1) \times (e-1)$

		QUESTION BANK	2016	5
19. The branches of a tree	is called		[
A) Cord) twing	L	J
C) Both A& B)none		
20. The links of a tree is calculated as the calculated at the cal	·	hone	[1
A) Cord) twing	L	J
C) Both A& B)none		
21. Which of the following	<i>'</i>		г	1
			[motriv	. ; .
zero	i columni matrix	is zero B) The sum of the values in row	maunx	. 18
C) Both A&B		D) None		
22. The tieset schedule giv	es relation betwe		[]
A) Branch currents and		B) branch voltages and link curre	_	ı
C) Branch currents and		D) None	1100	
23. The cutset schedule gi	· ·	•	[]
A) Branch currents and		B) branch voltages and link voltag	_	J
C) Branch voltages and		D) None	Co	
_		ees can be calculated using the formulae.	Г	1
A) det[BA]	B) det[AA	_	L	J
C) $det[A^TA]$	D) det[BA	_		
25. The fundamental loop	, –	_	[]
A) Cutset	B) Tieset	<u> </u>	L	J
C) Both A&B	D) None			
26. No. of cutsets are equa	*	of the tree	[]
A) Branch	B) loop	or the tree	L	J
C) link	D) None			
•	*	o. of of the tree.	[]
A) Branch	B) loop	97 429	L	J
C) link	D) None			
,	*	on of of the tree.	[]
A) Branch	B) loop		L	J
C) link	D) None			
,	·	n of of the tree.	[]
A) Branch	B) loop			,
C) link	D) None			
30. The dimension of tiese	•		[]
A) 1 x e	B) b x e			_
C) 1 x n	D) n x 1			
31. The dimension of cuts	*		[]
A) 1 x e	B) b x e			•
C) 1 x n	D) n x l			
32. The no. of cutsets of the	*	S	[]
A) 1	B) 2		-	,
C) 3	D) 4			

33. The no. of the	esets of the above graph is	L	J
A) 1	B) 2		
C) 3	D) 4		
34. The no. of li	nks of above graph is	[]
A) 1	B) 2		
C) 3	D) 4		
35. The no. of t	wings of above Graph is	[]
A) 1	B) 2		
C) 3	D) 4		
36. The no. of b	oranches of tree of above graph is	[]
A) 1	B) 2		
C) 3	D) 4		
37. The no. of b	ranches of tree of above graph is	[]
A) 1	B) 2		
C) 3	D) 4		
38. The no. of co	ords of tree of above graph is	[]
A) 1	B) 2		
C) 3	D) 4		
39. Mesh analys	is based on	[]
A) KCL	B) KVL		
C) Both	D) none		
40. Mesh analys	is based on	[]
A) KCL	B) KVL		
C) Both	D) none		

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : EC-II(15A02301) Course & Branch: B.Tech - EEE

Year & Sem: II-B.Tech & I-Sem **Regulation:** R15

$\underline{UNIT-II}$

THREE PHASE AC CIRCUITS

1.		The vo	oltage
	between any line and the Neutral point is called	[]
	A)	phase	
	voltage B) line voltage	•	
	C)	Both	A&B
	D) None		
2.		Phase	
	voltage is	[1
	A) The voltage between any line and the neutral point	L	,
	B)	The vo	oltage
	between R line and the neutral point		310080
	C)	The vo	oltage
	between Y line and the neutral point		Jugo
	D)	The vo	altage
	between B line and the neutral point	THE V	muge
3.	between B line and the neutral point	The vo	altage
J.	between any two lines is called]
	A)Phase voltage B) line voltage	L	J
	C) Both A&B D) None		
4.	C) Both A&B D) None	The	line
4.	voltage is		
	6	[]
	•		
5.	C) The voltage between Y and B lines D) The voltage between B and R lines	The	
Э.	violtopes computed by the 2 whose alternation are	The	1
	voltages generated by the 3 phase alternator are	[]
	A)	Same	
	magnitude and different frequency B)different magnitude and same frequen	•	
	C)	differe	ent
	magnitude and different frequency D) same magnitude and same frequency	-	_
6.		[. =0]
	A)	45 ⁰	
	B) 90^{0}		

	C) D)180 ⁰	120°	
7.	phase system,n a three-phase system, when the loads are perfectly balanced, the nei	In a thutral cur [Zero	
	B) one-third of maximum C) of maximum D) at maximum	two-thi	rds
8.	three-wire Y-connected generator, the phase voltages are 2 kV. The magnitudes voltages are A)	In a ce of the [2,000	
		666	V
9.	 D) 3,464 V In a Δconnected source driving a Δconnected load, the A) load voltage and line voltage are one-third the source voltage for a given phase B) load voltage and line voltage are two-thirds the source voltage for a given phase 	[]
10.	 C) load voltage and line voltage cancel for a given phase D) load voltage, line voltage, and source phase voltage are all equal for a given phase. In a \(\Delta \)connected source feeding a Y-connected load, A) each phase voltage equals the difference of the corresponding load voltages B) each phase voltage equals the corresponding load voltage 	se []
11.	C) each phase voltage is one-third the corresponding load voltage D) each phase voltage is 60° out of phase with the corresponding load voltage . In a Y-Y source/load configuration, the A) phase current, the line current, and the load current are all equal in each phase	[]
	 B) phase current, the line current, and the load current are 120° out of phase C) phase current and the line current are in phase, and both are 120° out of phase wire current D) line current and the load current are in phase, and both are out of phase with the payment 		oad
12.	current In a Y-connected circuit, the magnitude of each line current is A) one-third the phase current B) three times the corresponding phase C) equal to the corresponding phase current D) zero	[curren] t
13.	C) equal to the corresponding phase current D) zero Polyphase generators produce simultaneous multiple sinusoidal voltages that are sep A) certain constant phase angles B) certain constant frequencies	arated[]
14.	C) certain constant voltages D) certain constant currents . Which of the following is unit of current A) ampere B) volts	[]
15.	C) watts D) All . Which of the following is unit of voltage	[]

ELECTRICAL CIRCUITS-II

A) Ampere	B) volts		
C) watts	D) All		
16. Which of the following is unit of power	•	[]
A) Ampere	B) volts		
C) watts	D) all		
17. Which of the following is unit of energy	y	[]
A) Ampere	B) volts		
C) watts	D) joules		
18. What is the units for Active power	-	[]
A) KVA	B) KW		
C) KVAR	D)none		
19. What is the units for Reactive power		[]
A) KVA	B) KW		
C) KVAR	D)none		
20. What is the units for Apparent power _		[]
A) KVA	B) KW		
C) KVAR	D)none		
21. Units of frequency is		[]
A) KVA	B) KW		
C) Hz	D) none		
22. The power in the Delta connected system	m is	[]
A)3 $V_{ph}I_{ph}$ cos Ø	$\mathrm{B})\sqrt{3}\mathrm{V}_{\mathrm{ph}}\mathrm{I}_{\mathrm{ph}}\mathbf{cos}\emptyset$		
C) Both A&B	D) None		
23. The power in the Star connected system	ı is	[]
A)3 $V_{ph}I_{ph}$ cos Ø	$\mathrm{B})\sqrt{3}\mathrm{V}_{\mathrm{ph}}\mathrm{I}_{\mathrm{ph}}cos\emptyset$		
C)Both A&B	D)None		
24. Which of the following statement is cor	•	[1
A) $V_{ph} = V_L$	B) $I_{ph}=I_{L}$	-	-
C) $V_{ph} = \sqrt{3} V_L$	D) $I_L = \sqrt{3}I_{ph}$		
25. Which of the following statement is cor	•	[]
A) $V_{ph}=V_L$	B)I _{ph} = I _L	L	J
C) $V_{ph} = \sqrt{3} V_L$	$D)I_{L} = \sqrt{3}I_{ph}$		
	•	F	,
26. In which of the following system, the pl		[]
A) star	B) delta		
C) star-delta	D) delta-star	F	1
27. In which of the following system, the line		[J
A) Star	B) delta		
C) star-delta	D)delta-star	1	
28. In which of the following system, the li	ne voltage is equal to the $\sqrt{3}$ times of the phase		tage
		[]
A) Star	B)delta		
C) star-delta	D)delta-star		

29. In which of the following system, the l	ine current is equal to the $\sqrt{3}$ times of the pha	se curre	nt
		[]
A) Star	B)Star		
C) star-delta	D)delta-star		
30. A balance star connected load of (4+j3	Ω per phase is connected to a balanced 3 pha	se 400V	<i>r</i>
supply. The phase current is 12A. what		[1
A) 0.8 Lag	B)0.6 Lag	-	-
C) 0.7 Lag	D) 0.4 Lag		
,	Ω per phase is connected to a balanced 3 pha	se 400V	r
supply. The phase current is 12A. what		[1
A) 6.6 kW	B) 9.5 kW	L	•
C) 10 Kw	D) 12 Kw		
	phase voltage has a magnitude of 90 VRMS,	what is t	he
magnitude of each line voltage?		[]
A) 0V	B) 90V	L	-
C) 156 V	D)180V		
33. In a balanced three-phase load, each ph		[]
	B) one-third of total power	L	•
C) two-thirds of total power	D) a power consumption equal to IL		
,	line voltage and the nearest phase voltage, th	ere is a	
phase angle of	r	[1
A) 0^0	B) 30^{0}	L	,
C) 60^{0}	$D) 90^{0}$		
,	ase currents each have a magnitude of 9 A. Th	ne	
magnitude of each load current for a ba	_	[1
A) 3A	B) 6A	L	,
C) 9A	D)27A		
•	tage are shifted withangle of that of pl	nase	
voltages	8	[]
A) 30° lead	B) 30^{0} lag	L	,
C) 60^0 lead	D) 60 ⁰ lag		
	rents are shifted withangle of that of p	hase	
currents		[1
A) 30 ⁰ lead	$B)30^0$ lag	L	J
C) 60 ⁰ lead	D) 60 ⁰ lag		
38. Two wattmeter method of power meas	,	[1
A) Balance circuits	B) Un-balanced circuits	L	J
C) Both A & B	D) none		
	surement can be used to measure power in	[1
A) Balance circuits	B) Un-balanced circuits	L	J
C) Both A & B	D) none		
	sed to solve the unbalance 3 wire star connected	ed load	
40. Which of the following methods are us	sed to solve the univarance 3 whe star confident	ra 10au T	1
		1	- 1

ELECTRICAL CIRCUITS-II

A) Star to delta transformation

B) millimen's theorem

C) Loop method

D) ALL

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code: EC-II(15A02301) Course & Branch: B.Tech - EEE

Year & Sem: II-B.Tech & I-Sem **Regulation:** R15

UNIT – III

TRANSIENT ANALYSIS

1.		Trans	ient
	behaviour occurs in any circuit when	[]
	A)	There	are
	sudden changes of applied voltages B)the voltage source is shorted		
	C)	The o	circuit
	is connected or disconnected from the supply D) ALL		
2.		The	
	transient response occurs	[]

		(QUESTION BANK 2	016	
	C)		R/I	L	
	D) ALL				
10.	constant of series RC cir A)	reuit is	Th [1/F		ime]
	B) R/C C)		RC	2	
	D) ALL				
11.	constant of which of the	following circuit]]
	A) circuit	B) series RC circuit		rallel	
	C) circuit	D) parallel RL circuit			RL
12.	constant of which of the A)	following circuit]	is t rallel]
	circuit C)	B) series RC circuit			RL
13.	circuit	D) parallel RL circuit		nen	TCL.
10.	series RL circuit is conn L at $t=0^+$ is A)	nected to a voltage source V at t=0, the curren		indu	ctor]
	B) infinity C)		Ze	ro	
14.	D) V/L	V 44 0 4	***	nen	
	L at $t=\infty$ is A)	nected to a voltage source V at t=0, the curren	n passing tilrough the [V/J]
	B) Infinity B)		Ze	ro	
15.	D) V/L			nen	
	series RC circuit is conn L at t=0 ⁺ is A)	nected to a voltage source V at t=0, the curren]		ctor]
	B) zero C)		V/	R	
16.	D) V/WC		W /1	nen	
10.	series RC circuit is conn L at t=∞ is	nected to a voltage source V at t=0, the curren			ctor]
	ELECTRICAL CIRCUITS-I			Page	19

	A)	Infinity	7
	B) zero C)	V/R	
17.	D) V/WC series RC (R=10 Ω ,C=2 μ F) circuit is connected to a voltage source V at t=0, what constant of the network A)	When is the]
	B) 2 μs C)	0.2	ms ms
18.	D) 0.2μs	When	
	series RL (R=10 Ω ,L=5mH) circuit is connected to a voltage source V at t=0, what constant of the network A) B) 50 μs	is the [50	time] ms
	C) D) 5 μs	5	ms
19.	series RC (R=10 Ω ,C=10 μ F) circuit is connected to a voltage source V at t=0, the curthrough the inductor L at t=0.1ms is A) B) zero	When rrent pas [Infinity]
20.	C) D) V/WC	V/R When	
20.	series RL (R=10Ω,L=10mH) circuit is connected to a voltage source V at t=0, the curthrough the inductor L at t=0.1s is A)]
	B) zero C) D) V/WC	V/R	
21.	transient current in an RLC circuit is over damped when A)	The $ (\frac{R}{2L})^2 > $] * 1 LC
	B) $\left(\frac{R}{2L}\right)^2 = \frac{1}{LC}$	$\left(\frac{R}{2L}\right)^2 \le$	$\frac{1}{LC}$
22.	D) None transient current in an RLC circuit is under damped when	The	1

	A		($\left(\frac{R}{2L}\right)^2$	$> \frac{1}{LC}$
		$B)(\frac{R}{2L})^2 = \frac{1}{Lc}$			
	C		($\left(\frac{R}{2L}\right)^2$	$<\frac{1}{LC}$
23.		D) None	Т	Γhe	
25.	trans	sient current in an RLC circuit is critically damped when]
	A))	($\left(\frac{R}{2L}\right)^2$	$> \frac{1}{LC}$
		$B) \left(\frac{R}{2L}\right)^2 = \frac{1}{LC}$			
	C))	($\left(\frac{R}{2L}\right)^2$	$\leq \frac{1}{LC}$
		D) None			
24.	₽.	- 1	I		
	$\left(\frac{2I}{v}\right)$	$^{2} > \frac{1}{LC}$ condition gives response in RLC series circuit		[]
	A)		0	ver	
	C)	damped B) under damped	C	ritical	11 _v
	C)	damped D) none	C	Titica	11 y
25.		•	I	f	
	$\left(\frac{R}{2L}\right)^2$	$^2 = \frac{1}{LC}$ condition gives response in RLC series circuit		[]
	A)		0	ver	
	~	damped B) under damped			
	C)	damped D) none	C	ritical	lly
26.		damped D) none	I	f	
	$\left(\frac{R}{2L}\right)^2$	$\frac{1}{LC}$ condition gives response in RLC series circuit		[]
	A)		0	over	
	C)	damped B) under damped	C	ritical	11v
	C)	damped D) none	•	111104	,
27.			T	The	
	_	·	[]		,•
	A)	domain response only B) frequency response only	1	The	time
	B)		F	Both A	4& B
		D) NONE			
28.		forms a specification for ation is	T	The la	
	trans	sform o a unit step function is	1	l /S	J
	11,	B) 1	1	, ~	

1/**S**²

B)

D)
$$\frac{1}{S+A}$$

29. The laplace

transform o a unit ramp function is 1/S

A)

B) 1 $1/S^{2}$ C)

D) $\frac{1}{S+A}$

The laplace 30.

transform of the first derivative of a function f(t) is ſ] F(S)/SA)

B) SF(S)-F(0)C) SF(S)-F(0)

D)F(0)

31. The laplace

transform of the integral of a function f(t) is F(S)/SA)

B)SF(S)-F(0)

C) SF(S)-F(0)D) F'(0)

32. Laplace transform of the function e^{-20t} is

] A)

B) s+20

C) s - 20

D) $\frac{1}{s+20}$ Laplace

33. transform of cos2t

A) B)) $\frac{1}{5^2-4}$

C)

 $D)\frac{s}{s^2-4}$

34. Laplace

transform of sin4t A)

B) $\frac{1}{5^2-16}$

C)

D)
$$\frac{4}{5^2+16}$$

35. transform of e^{5t}f(t) is

A)

- B) F(S-1) C)
- D) F(S-5)

36. transform of $\frac{6}{s^4}$ is

- A)
 - B) t³
- C)
- D) 3t

37. laplace of $\frac{2}{s+3}$ is

- A)
 - B) 2e^{-3t}
- C) D) 2e^{-t}

transform of damped sinewave e^{-3t} sin50t is A)

- B) $\frac{s}{(s+3)^2+50^2}$
- C)

39. value of $\frac{2s+1}{s^4+8s^5+16s^2+s}$ is

- A)
 - B) infinity
- C) D) 1

40. value of 20-10t-e^{-25t} is

- A)
 - B) 19
- C) D) 25

The laplace

[

- F(s)
- F(S/5)

The inverse []

- 3

The inverse

- [] 2(t+3)
- e^{-3t}

Laplace

The initial

- []
- 2

zero

- The initial
- [
- 20
- 10

Page 23

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : EC-II(15A02301) Course & Branch: B.Tech - EEE

Year & Sem: II-B.Tech & I-Sem **Regulation:** R15

UNIT – IV

FOURIER TRANSFORMS

1.	Fourier series for the sign	nal e ^{-at} does not exist if]
	A) a>0	B) a=0		
	C) a=1	D) a<0		
2.	The Fourier transform		[]
	A) satisfies linearity	B) does not satisfies linearity		
	B) both A& B	D) none		
3.	Fourier transform of the	unit impulse $\delta(t)$ is	[]

	A) 0	Β) π		
	C) 1	D) $\delta(w)$		
4.	What is the spectrum of a	dc signal	[]
	A) 0	Β) π		
	C) 2π	D) $2 \pi \delta(w)$		
5.	The Fourier transform exi	st, if the following condition is satisfied	[]
	A) $\int_{-\infty}^{\infty} f(t)dt > K$	B) $\int_{-\infty}^{\infty} f(t)dt < \infty$		
	C) $\int_{-\infty}^{\infty} f(t)dt = 0$	D) none		
6.	Inverse Fourier transform	$1 \text{ of } \delta(ext{w-w}_0)$	[]
	A) $\frac{1}{2\pi}e^{-jw_0t}$	B) $\frac{1}{2\pi}$		
	C) e^{-jw_0t}	D) e^{jw_0t}		
7.	The Fourier transform of	signal x(t) is	[]
	A) $-x(w)$	B) x(-w)		
	C) -x(-w)	D) x(w)		
8.	The Fourier transform of	sin(t) function is	[]
	A) $\frac{2}{jw}$	B) $\frac{2}{jw}$		
	C) jw	D) 2jw		
9.	Time convolution propert	y states that	[]
	A) $F_1(t)^* F_2(t)$	B) $F_1(t)F_2(t)$		
	C) $F_1(w)^* F_2(w)$	D) $F_1(w)/F_2(w)$		
10	. The frequency convolution	n property states that	[]
	A) $F_1(t)^* F_2(t)$	B) $F_1(t)F_2(t)$		
	C) $F_1(w)^* F_2^*(w)$	D) $F_1(w)/F_2(w)$		
11	. In a periodic signal, The p	period T_0 is doubled, the fundamental frequency w_0 in t	the spec	ctrum
	becomes		[]
	A) Doubled	B) halved		
	C) Increased 4 times	D) no change		
12	. Any periodic function car	be expressed by a Fourier series when the function ha	ving[]
	A) Infinite number of fin	ite discontinuities in a period		
	B) finite number of finite	discontinuities in a period		
	C) finite number of infinit	te discontinuities in a period		
	D) Infinite number of inf	inite discontinuities in a period		
13	. A function is said to be ev	ven, if $x(t)$ is	ſ	1

A) x(-t)	B)-x(t)		
C) x(2t)	D) $x(t)$		
14. A function is said to	be even, if $x(t)$ is	[]
A) x(-t)	B) -x(t)		
C) x(2t)	D) x(t)		
15. If $x(-t)=x(t)$ then the	e function is called	[]
A) Odd function	B) even function		
C) Both A & B	D) none		
16. If $x(-t)=-x(t)$ then the	e function is called	[]\
A) Odd function	B) even function		
C) Both A & B	D) none		
17. Identify the even fur	nction	[]
A) Cosine	B) sine		
C) Both A&B	D) none		
18. Identify the odd fur	nction	[]
A) Cosine	B) sine		
C) Both A&B	D) none		
19. A periodic function	x(t) is said to have half wave symmetry if $x(t)$ is	[]
A)- $x(t+\frac{T}{2})$	B) $x(t+\frac{T}{2})$		
C) $-x(t-\frac{T}{2})$	D) $-x(t-\frac{T}{2})$		
20. The Fourier transfor	rm of a conjugate symmetric function is always	[]
A) imaginary	B) conjugate anti-symmetric		
C) real	D) conjugate symmetric		
21. The Fourier transfor	rm may be applied to	[]
A) Non-periodic	B)Periodic		
C) Both periodic &	non-periodic D) Neither periodic or non-periodic		
22. The Fourier transfor	rm of u(t) is	[]
A) $\frac{1}{j\omega}$	B) jω		
C) $\frac{1}{1+j\omega}$	D) $\pi\delta(\omega) + \frac{1}{j\omega}$		
23. The Fourier transfor	cm of $e^{-\alpha t}u(t)$ is	[]
A) $\frac{1}{\alpha - j\omega}$	B) $\frac{1}{\alpha + j\omega}$		
C) $\frac{1}{a^2+\omega^2}$	$D)\frac{1}{\alpha^2-\omega^2}$		

	QUESTION BA	ANK 201	6
24. The Fourier transform of tx(t)	is	[]
A) $\frac{dX(j\omega)}{d\omega}$	B) j $\frac{d\aleph(j\omega)}{d\omega}$		
C) $\frac{\mathcal{K}(j\omega)}{\omega}$	$D) \frac{f dK(f \omega)}{d \omega}$		
25. The Fourier transform of e ^{Jω}	tx(t) is	[]
A) $X(\omega + \omega_0)$	B) $X(\omega_0)$		
C) $X(\omega - \omega_0)$	$D)X(\frac{\omega}{\omega_n})$		
26. The Fourier transform of x^* (t) is	[]
A) <i>X</i> *(ω)	B) $X^*(-\omega)$		
C) $-X^*(\omega)$	D) $-X^*(-\omega)$		
27. The Fourier transform of $\frac{dx(t)}{dt}$	is	[]
A) $\frac{d\omega}{\omega}X(\omega)$	B) $\frac{1}{\omega}X(\omega)$		
C) $j\omega X(\omega)$	D) $\frac{j\omega}{\mathcal{X}(\omega)}$		
28. The Fourier transform of x(at)	=]]
A) $\frac{1}{ \alpha }X\left(\frac{\omega}{\alpha}\right)$	$B)\frac{1}{ \alpha }X(\alpha\omega)$		
C) $\frac{1}{ \alpha }X\left(\frac{\alpha}{\omega}\right)$	$D)\frac{1}{ \omega }X\left(\frac{\omega}{a}\right)$		
29. The Fourier series may be app	olied to	[]
A) Non-periodic	B)Periodic		
C) Both periodic &non-periodic	dic D) Neither periodic or non-period		
30. Periodic signal are analyzed b	y using	[]
A) Fourier series	B) Fourier transforms		
C) Both A&B	D) none		
31. Non-Periodic signal are analy	zed by using	[]
A) Fourier series	B) Fourier transforms		
C) Both A&B	D) none		
32. If the signals can be represe	nted by sum of the sinusoids whose frequen	ncies are in	ntegral
multiple of fundamental frequ	ency is called	[]
A) Non-periodic	B) Periodic		
C) Both periodic &non-periodic	dic D) Neither periodic or non-period		
33. If the signals can be represent	ted by sum of the sinusoids whose frequencie	s are not in	ntegral
multiple of fundamental frequ	ency is called	[]
A) Non-periodic	B) Periodic		

- C) Both periodic &non-periodic D) Neither periodic or non-period
- 34. Fourier series can be represented as

[

]

]

- A) Trigonometric form
- B) exponential form

C) Both A & B

- D) none
- 35. Series coefficient a₀ in Fourier series can be calculated using

[

- A) $\frac{1}{2\pi} \int_0^{\pi} x(t) d(wt)$
- B) $\frac{1}{2\pi} \int_{0}^{2\pi} x(t) d(wt)$
- C) $\frac{1}{2\pi} \int_{\pi}^{2\pi} x(t) d(wt)$ D) $\frac{1}{2\pi} \int_{-\pi}^{\pi} x(t) d(wt)$
- 36. Series coefficient a_n in Fourier series can be calculated using

1

- A) $\frac{1}{\pi} \int_0^{\pi} x(t) d(wt)$ B) $\frac{1}{\pi} \int_0^{2\pi} x(t) cosnwt d(wt)$
- C) $\frac{1}{\pi} \int_0^{2\pi} x(t) simwt \ d(wt)$ D) $\frac{1}{\pi} \int_{\pi}^{2\pi} x(t) cosnwt \ d(wt)$
- 37. Series coefficient b_n in Fourier series can be calculated using

1

]

1

- A) $\frac{1}{2}\int_0^\pi x(t)d(wt)$
- B) $\frac{1}{2}\int_{0}^{2\pi}x(t)cosnwt\ d(wt)$
- C) $\frac{1}{\pi} \int_0^{2\pi} x(t) simwt \ d(wt)$ D) $\frac{1}{\pi} \int_{\pi}^{2\pi} x(t) cosnwt \ d(wt)$
- 38. Which of the following is a periodic signal

ſ

A) x(t)

B) x(t+T)

C) x(2t)

- D) x(w)
- 39. Parseval's identity states that $\int_{\infty}^{\infty} |f(t)|^2 dt =$

- A) $\int_{\infty}^{\infty} X_1(\omega) X_2^*(\omega) d\omega$ B) $\frac{1}{2\pi} \int_{\infty}^{\infty} X_1(\omega) X_2^*(\omega) d\omega$
- C) $\frac{1}{2\pi} \int_{\infty}^{\infty} X_1^*(\omega) X_2^*(\omega) d\omega$ D) $2\pi \int_{\infty}^{\infty} X_1(\omega) X_2^*(\omega) d\omega$
- 40. The Fourier transform of $x_1(n)*x_2(n)$ is

ſ 1

- A) $X1(\omega) X(\omega)$
- B) $X1(\omega)X2(\omega)$
- C) $X1(\omega) * X2(\omega)$
- D) Does not exits

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : EC-II(15A02301) Course & Branch: B.Tech - EEE

Regulation: R15 Year & Sem: II-B.Tech & I-Sem

$\underline{UNIT-V}$

FILTERS AND CIRCUITS SIMULATION

1.			A IOW	
	filter is one which		[]	
	A)		Passes all	
	low frequencies B) attenuates all high fr	equencies		
	C)		passes all	
	frequencies up to cut-off frequency and attenuates all other frequencie	s D) none		
2.			A high pas	SS
	filter is on which		[]	
	A)		Passes all	
	high frequencies			

	B)		attenuates
		all low frequencies	
	C)		Attenuates
		all frequencies below a designated cut-off frequency, and passes all frequencies a	bove cut off
	D)		none
3.			A band
		p filter is one which	[]
	A)		Attenuates
	D)	frequencies between two designed cut off frequencies and passes all other freq	D
	B)		Passes .
	<i>(</i> 1)	frequencies between two designated cut off frequencies and attenuates all other fre	-
	C)	£	Passes all
	D)	frequencies	None
4.	D)		An ideal
4.	filt	er should have	
	A)	er should have	Zero
	11)	attenuation in pass band B)infinite attenuation in pass band	ZCIO
	C)	attenuation in pass band	Zero
	C)	attenuation in attenuation band D)infinite attenuation in attenuation band	2010
5.		antinuation in attenuation band Dyminite attenuation in attenuation band	The
٠.	pro	pagation constant of a symmetrical T-section and π -section are	[]
	A)	1.8	Same
	11)	B) not same	Same
	C)	z) not sume	Equal to 1
	-,	D) equal to zero	_4
6.		, · 1 · · · · · ·	A line work
	as		[]
	A)		attenuator
		B) LPF	
	C)		HPF
		D) neither of the above	
7.			Attenuation
	is e	expressed in	[]
	A)		Decibels
		B) nepers	
	C)		Both
		D)none	
8.			Attenuation
		tortion occurs due to	[]
	A)		Non
	C'	uniform attenuation against frequency B)uniform attenuation against frequency	Non
	C)	wife and attenuation assigns time.	Non
		uniform attenuation against time D)uniform attenuation against time	

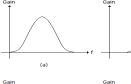
9.		Decib	el is
unit of which of the following		[]
A)		Attenu	ation
B) transient			
C)		Power	•
D) energy			
10. Neper is unit of which of the follow	_	[]
A) Attenuation	B)transient		
C) Power	D)energy		
_	nput voltage(or current) to output voltage(or cur	rent) is	
called		[]
A) Decibel	B) neper		
C) Power	D) voltage ratio		
12 Is defined as 10 times of the	ratio of input voltage((or current) to output volt	age(or	
current) is called		[]
A) Decibel	B) neper		
C) Power	D)voltage ratio		
13Is defined as 10 times of the ra	tio of input power to output power	[]
A) Decibel	B) neper		
C) Power	D)voltage ratio		
14. One decibel is equal tonepe	er	[]
A) 1.115	B) 0.115		
C) 2.113	D) 5.115		
15. One neper is equal todecibe	els	[]
A) 8.009	B) 8.69		
C) 9.69	D) 10.69		
16. The critical frequency is defined as	the point at which the response drops from t	he pass	band
		[]
A) -20 dB	B) -3 dB		
C) -6 dB	D) –40 dB		
17 filter passes all frequence	ies within a band between a lower and an upper of	critical	
frequency and rejects all others outsi	de this band.	[]
A)low-pass	B) high pass		
C) band pass	D)band stop		
18. A third-order filter will have a roll-	off rate of	[]
A) -20 dB/decade	B) -40 dB/decade		
C) -60 dB/decade	D) -80 dB/decade		
19. A network designed to pass signals	with all frequencies except those between two sp	pecified	cut-
off frequencies is called a		[]
A) low-pass	B)high pass		
C) band pass	D)band stop		
20. A network designed to pass signals	at frequencies above a specified cut-off frequencies	cy is	
called a		[]
A) low-pass	B)high pass		

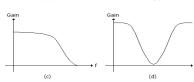
C) band pass

- D)band stop
- 21. A network designed to pass signals at frequencies below a specified cut-off frequency is called a
 - []

A) low-pass

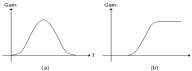
B)high pass

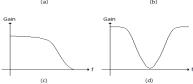

C) band pass


- D)band stop
- 22. A network designed to pass signals with frequencies between two specified cut-off frequencies is called a
 - B)high pass

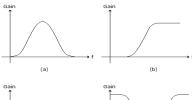
A) low-pass C) band pass

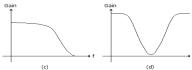
- D)band stop
- 23. Identify the frequency response curve for a band-pass filter.

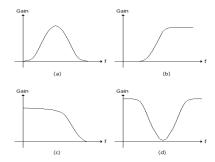




24. Identify the frequency response curve for a low-pass filter






25. Identify the frequency response curve for a high-pass filter

26. Identify the frequency response curve for a band-stop filter

27. A point in network or d	liagram at which paths or line intersects is called	[]
A) Branch	B) node		
C) element	D) ALL		
28. The interconnection of	nodes is called	[]
A) Branch	B) node		
C) element	D)ALL		
29. The element which del	ivers power is called	[]
A) Load	B) source		
C) Both	D) none		
30. The element which con	sumes power is called	[]
A) Load	B)source		
C) Both	D)none		
31. Which of the following	g is passive element	[]
A) Current source	B) voltage source		
C) Power	D) resistor		
32. Which of the following is active element []
A) Power	B) resistor		
C) Voltage source	D) diode		
33. The maximum output v	voltage of a certain low-pass filter is 15 V. The output v	voltage at the	
critical frequency is		[]
A) 0 V	B) 15 V		
C) 10.60 V	D) 21.21 V		
34. A practical voltage sou	rce consists of	[]
A) an ideal voltage source	ce in series with an internal resistance		
B) an ideal voltage source	ce in parallel with an internal resistance		
C) both (A) and (B) are	correct		
D) none of the above			
35. A practical current sour	rce consists of	[]
A) an ideal current source	ee in series with an internal resistance		
B) an ideal current source	e in parallel with an internal resistance		
C) both (A) and (B) are	correct		
D) none of the above			
36. Which of the following	s is dependent is not a dependent source	[]
A) CCVS	B) VCCS		
C) VCCS	D) VCDS		

37. Which of the following statement	t is used to calculate all node voltages and reference i	node	
voltage		[]
A) .TRAN	B) .OP		
C) .END	D) .PRINT		
38. Which of the following statement	t is used to provide graphical capacity of PSpice	[]
A) .TRAN	B) .OP		
C) .PROB	D) .PRINT		
39. Which of the following statement	t is used for outputs of PSpice	[]
A).TRAN	B) .OP		
C) .END	D) .PRINT		
40. Which of the following statement	t is used to specifies the time interval over which tran	sient	
analysis takes place of PSpice		[]
A) .TRAN	B) .OP		
C) .END	D) .PRINT		

Prepared by $\underline{\textbf{B.JAYANTHI}}$

ELECTRICAL CIRCUITS-II