

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : DS (15A05201) Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech - EEE Regulation: R15

UNIT –I

ARRAYS AND LINKED LIST

1. Explain the following operations on arrays	[5M+5M][L5]
A. Insertion B. merging	
2. Narrate following operations on arrays	[5M+5M][L6]
A. Searching B. Deletion	
3. A. Why pointer arrays are efficient than arrays. Justify your answer by taking	ng an example.
	[5M][L4]
B. Explain about Multi-dimensional arrays	[5M][L5]
4. Narrate following operations on single linked list	[4M+3M+3M][L6]
A. Traversing	
B. Insertion before head node	
C. Insertion after tail node	
5. Describe following operations on single linked list	[3M+4M+3M][L1]
A. deleting head node	
B. copying	
C. deleting tail node	
6. Explain following operations on single linked list with algorithm	[5M+5M][L5]
A. Deleting a specified node B. Insertion after specified node	
7. Write about the following operations on double linked list	[4M+3M+3M][L6]
A. Deleting head node	
B. Insertion after specified node	
C. Insertion before head node	
8. a) Define data structure? Name few data structures	[2M][L1]
b) Define one-dimensional array and draw its memory representation	[2M][L1]
c) What is indexing formula?	[2M][L4]
d) Write steps to traverse an array.	[2M][L6]
DATA STRUCTURES	

QUE	STION BANK 2016
e) Define multi-dimensional array and draw it's memory representation	[2M][L1]
9. a) In how many ways we can arrange elements of a 2D array in memory [2	2M][L4]
b) What is pointer array?	[2M][L4]
c) Draw the node structure of a double linked list	[2M][L1]
d) Differentiate static data structure and dynamic data structure	[2M][L1]
e) What are the applications of "linked lists"?	[2M][L4]

STACKS AND QUEUES

1. Write algorithm to perform STACK operation on a given set of numbers.	[10M][L6]
2. Write algorithm to perform QUEUE operation on a given set of numbers.	[10M][L6]
3. Explain enqueue() and dequeue() operations on circular queue.	[10M][L5]
4. Narrate insertion and deletion operations on "priority Queue" using linked list.	[10M][L6]
5. Explain different kinds of hash functions.	[10M][L5]
6. Describe collision resolution techniques while using Hash tables.	[10M][L1]
7. Write an algorithm to "convert infix expression to post fix expression"	[10M][L6]
8. Write logic of push () and pop() operations on stack using linked list.	[10M][L6]
9. Write logic of enqueue() and dequeue() operations on Queue using linked list.	[10M][L6]
10. a) $(A + B. / (C + D (D * E)))$. Convert it into postfix expression.	[2M][L3]
b) What is recursive function?	[2M][L4]
c) Write algorithm to push an element into stack.	[2M][L6]
d) Draw static and dynamic stacks representations.	[2M][L1]
e) What are the applications of Queue?	[2M][L4]
11. a) Define priority queue and Deque	[2M][L1]
b) What is the drawback of linear Queue Data structure?	[2M][L4]
c) What is hash table?	[2M][L4]
d) Write down the types of hash functions.	[2M][L6]
e) What are the collision resolution techniques?	[2M][L6]

QUESTION BANK	2016
---------------	------

TREES AND GRAPHS

1. Explain insertion and deletion of a new element in height balanced tree.	[10M][L5]
2. Write Warshsall's Algorithm for Shortest path problem and give an example	[10M][L6]
3. Discuss the different Traversal Operations on a Binary Tree with Algorithms	[10M][L4]
4. A. What are the advantages and disadvantages of sequential representation of a binary	y tree?
	[10M][L4]
B. Write an algorithm to search an element in binary search tree?	[10M][L6]
5. Construct AVL Tree using "8,9,10,2,1,5,6,4,7,11,12,3" elements inserting in sequence	ce[10M][L3]
6. Illustrate heap sort technique using heap trees.	[10M][L4]
7. A. In how many ways we can represent a graph?	[5M][L4]
B. Explain about applications of graph	[5M][L5]
8. Write BFS algorithm and illustrate it with an example.	[10M][L6]
9. Write DFS algorithm and illustrate it with an example.	[10M][L6]
10. Write an algorithm to insert elements into a binary search tree.	[10M][L6]
11. a) What is inorder traversal of a tree?	[2M][L4]
b) Difference between complete binary tree and full binary tree?	[2M][L1]
c) What is binary search tree?	[2M][L4]
d) Give one example for DFS	[2M][L1]
e) What is connected graph	[2M][L4]
12. Write a procedure for topological sorting in a graph.	[10M][L6]

UNIT – IV

SORTING

1. Explain in detail the following with an example	
a) Straight Insertion sort	[5M][L5]
B. List insertion sort	[5M][L5]
2. Write and explain the algorithm for bubble sort with example.	[10M][L6]
3. A. Give the classification of sorting methods.	[5M][L6]
DATA STRUCTURES	Page 3

B. Sort 3,1,4,1,5,9,2,6 in decreasing order using heap sort.	[5M][L3]
4. State and explain the algorithm to perform merge sort with example.	[10M][L1&L5]
5. State and explain the algorithm to perform heap sort with example.	[10M][L1&L5]
6. A. Give the classification of classic sorting techniques.	[5M][L6]
B. Sort in ascending 34,2,56,7,12,4 using bubble sort.	[5M][L3]
7. Write and explain the algorithm for quick sort with example.	[10M][L6]
8. Give a procedure for heap sort and analyze its complexity.	[10M][L6&L4]
9. Explain merge sorting with examples and analyze its complexity.	[10M][L5&L4]
10. a) What is the difference between internal sorting and external sorting	g? [2M][L4]
b) What is Lexicographic order?	[2M][L4]
c) Define stable sort.	[2M][L1]
d) Define swap with example.	[2M][L1]
e) Give the time complexity for quick sort.	[2M][L6]

$\mathbf{UNIT} - \mathbf{V}$

SEARCHING

1. State and explain sequential sort algorithm with example problem.	[10M][L1&L5]
2. State and explain binary sort algorithm with problem.	[10M][L1&L5]
3. Define hashing and explain any four Hashing Methods with example.	[10M][L1&L5]
4. A. What is hashed list search?	[5M][L4]
B. Explain Linked list collision resolution method.	[5M][L5]
5. A. Give the detail about bucket hashing.	[5M][L6]
B. Write about the different folding methods.	[5M][L6]
6. Explain the following.	[3+3+4=10M][L5]
A. Key offset	
B. Digit extraction method	
C. Pseudorandom Collision Resolution	
7. Perform Binary search method to find 22 from the following sorted array.	[10M][L3]
4,7,8,10,14,21,22,36,62,77,81,91	
8. Give the logics behind linear and binary search methods.	[10M][L6]
9. Explain collision resolution.	[10M][L5]
10. Explain Fibonacci search using an example.	[10M][L5]
11. a) What are self-referential structures?	[2M][L4]

	QUESTION BANK 2016
b) What is meant by collision in hashing?	[2M][L4]
c) Define sequential search.	[2M][L1]
d) What is meant by probability search?	[2M][L4]
e) Give the efficiency of sequential and binary sort.	[2M][L6]

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : DS (15A05201) Year & Sem: II-B.Tech & I-Sem **Course & Branch**: B.Tech - EEE **Regulation:** R15

<u>UNIT 1</u>

ARRAYS AND LINKED LIST

1. logical organization of data	a in computer memory	is called		[]
A.data style	B.data manner	C.data set	D.all are wron	g
2. A 2D array which contains	majority of elements	as null or zero		[]
A. sparce matrix	B.sparse matrix	C.null matrix	D.all a	re correct
3. Address of the first element	t of an array is called			[]
A. starting address	B.base address	C.both p &q are valid	D.all are corre	ct
4. Which of the following ref	fers indexing formula			[]
A. $a[i]=M+(i-L)*w$	B.a[i]=M+(i+L)*w	C.a[i]=M-(i+L)*w	D.a[i]=M*(i-L	2)+w
5. Arrays are not static data st	tructures			[]
	B. false		rmine D. may	y be
6. A pointer array variable co	ontainsas it	's elements		[]
A. integer values		B.addresses of memo	ry locations	
C.both p &q are valid		D.none		
7. What does link part of a ta	il node in a circular li	nked list hold?		[]
A. address of head not	de	B.address of header n	ode	
C.address of it's previ	ious node	D.none		
8.What is the value present in				[]
A. address of head not	de	B.address of header n	ode	
C.address of tail node		D.all are wrong		
9. Tail node in circular linked	• •			[]
A.header node	B.head node	C.NULL value	D. it's	next node
address	4	a a		
10. How can we access the va	lue present at n th - rov	v ,p ^{tn} - plane,m ^{tn} - colun	nn of a multi-di	mensional
array "x"				[]
	B.x[n][m][p]	C.x[p][n][m]	D.x[m][n][p]	
11. memory for elements in an	•	-		
	B.false	C. not possible	D. cann't pred	ict
12. Each node in a linked list				[]
	B.2	C.4	D.5	
13. LLINK is the pointer point				[]
	B.predecessor node		D.last node	
14. A linear list in which the p				[]
A.singly linked list			D. all are corre	ect
15.If address part of the head			_	[]
A.list has exactly 1 no	de	B.list has exactly 2 no	odes	
DATA STRUCTURES				Page 6

C.list has at least 2 nodes D.all are wrong 16.let us suppose, header node address is:100, head node address is:200 and a new node(address is 300) is inserted after the header node. Then data part of the header node contains Т A.100 B.200 C.300 **D.NULL** 17.Llink part of the header node in a circular double linked list contains ſ 1 A.address of left most node B.A.address of right most node C.address of head node D.both p&r 18. Which of the following is disadvantage in using "linked lists"? Γ 1 A.requires more memory B.dynamic data structure C.elements are deleted and inserted easily D. none 19.Memory for elements in linked list are allocated in non-contiguous locations 1 A. true C. cann't determine D. may be B. false 20. Which of the following data structures are convenient to perform insertion and deletion operations A. arrays B. linked lists C. both A&B D.all are wrong 21. In liked representation of stack holds the elements of the stack. 1 A. INFO fields B. TOP fields C. LINK fields D. NULL fields 22. What happens when you push a new node onto a stack? 1 A. The new node is placed at the front of the linked list B. The new node is placed at the back of the linked list C. The new node is placed at the middle of the linked list D. No Changes happens 23. which of the following is disadvantage of arrays 1 A. static storage B. insertions require shifting of elements C. deletions require shifting of elements D. all are correct 24. To traverse an array means] A. to process each element in an array B. to delete an element from an array C. to insert an element into an array D. to combine two arrays into a single array 25. Finding the location of the element with a given value is: 1 D. None of above A. Traversal B. Search C. Sort 26.If the base address of a character array is 200 then what is the address of 3rd element in that array C.204 A.202 B.203 D. none 27. The memory address of first element in array is called? 1 A. base address B. first address C. stating address D. both a &c 28.the address of first node in a linked list is? 1 A. can't say B.100 C. 0 D. none 29. A doubly linked list has pointers with each node. 1 A. 0 **B**. 1 C. 2 D. 3 30. A doubly linked list is also called as..... 1 A. linked list B. one way chain C. two way chain D. right link 31. In a linked list, insertion can be done as 1 D. all of the above A. beginning B. end C. middle 32. To implement Sparse matrix dynamically, the following data structure is used 1 A. Trees B. Graphs C. Priority Queues D Linked List 33. Header of a linked list is a special node at the 1 B. at the middle of the linked list A. end of the linked list C. beginning of the linked list D. none of these 34. Which of the following operations is performed more efficiently by a doubly linked list than by

			QUESTION BAN	IK 2	2016
a linear linked list?				[]
A. Deleting nodes v	vhose location is given	n			
B. Searching an uns	orted list for a given i	item			
C. Inserting a node	after the node with a g	givenlocation			
e	st to process each nod				
35. Overflow condition in a	-		g to	[]
	en free space pool is o				
	es when free space poo				
	en linked list is empty	ý			
D. none of these					
36. If an array is declared a	$s arr[] = \{1,3,5,7,9\};t$	hen what is the va	alue of sizeof(arr[3])?	[]
A. 1	B. 2	C. 3	D. 8		
37. If an array is declared a			alue of arr[3]?	[]
A. 1	B. 7	C. 9	D. 5		
38. If an array is declared a		•••		[]
A. 50	B . 100	C. 200	D. 400		
39. If an array is declared a	s int arr[5][5], howma	any elements can	it store?	[]
A. 5	B. 25	C.10	D. 0		
40. The smallest element of	•	lled its		[]
A. lower bound	B. upper bound	C. range	D. extraction		

<u>UNIT 2</u>

STACKS AND QUEUES

1. Stack is a				[1
A. LIFO	B. FIFO	C. FILO	D. LILO	-	-
2. Disks piled up one a	bove the other represent	nt a		[]
A. Stack	B. Queue	C. Linked List	D. Array	_	-
3. Reverse Polish notat	ion is the other name of	of		[]
A. Infix expressio	n B. Prefix expression	on C. Postfix expression	ion D. Algebraic	expres	sion
4. Using a recursive fu	nction takes more men	nory and time to execut	æ.	[]
A. true	B. false	C. can't predict	D. may be		
5. The following seque	ence of operations is pe	rformed on a stack pus	h(1), push(2), po	op, pusl	n(1),
push(2), pop, pop, pop	, push(2),pop. The sequ	uence of the popped ou	t values is	[]
A. 2, 2, 1, 1, 2	B. 2, 2, 1, 2, 2	C. 2, 1, 2, 2, 1	D. 2, 1, 2, 2	, 2	
6. Infi nite recursion of	ccurs when			[]
A. a base case is o	omitted	B. a base case is no	ever reached		
C. both A. and B.		D. none of the abo	ove		
7. The data structure us	sed for recursion is			[]
A. stack	B. queue	C. tree	D. none of t	he abov	/e
8. A line in a grocery s	tore represents a			[]
A. Stack	B. Queue	C. Linked List	D. Array		
9. In a queue, insertion	is done at			[]
A. Rear	B. Front	C. Back	D. Top		
10. The function that d		eue is called		[]
A. enqueue	B. dequeue	C. pop	D. peek		
11. The size of a linke	d queue cannot change	-		[]
A. true	B. false	C. can't predict	D. may be		
12. A queue is also called	a			[]
DATA STRUCTURES				Pag	ie 8
• • • • • • • • • • • • • •				3	

QUESTION BANK 2016 A. last in first out data structure B. first in last out data structure C. first in first out data structure D. last in last out data structure 13. in a hash table, an element with key k is stored at index 1 B. log k D. k2 A. k C. h(k)14. In any hash function, M should be a 1 A. Prime number B. Composite number C. Even number D. Odd number 15. In which of the following hash functions, do consecutive keys map to consecutive hash values? 1 ſ A. Division method B. Multiplication method D. Mid-square method C. Folding method 16. The process of examining memory locations in a hash table is called 1 B. Collision A. Hashing C. Probing D. Addressing 17. Which open addressing technique is free from clustering problems? 1 A. Linear probing B. Quadratic probing C. Double hashing D. Rehashing 18.A queue in which both insertions and deletions are possible at both ends is called ſ 1 A.Dequeue B.Deq C.Deque **D**.Dique 19.A Queue in which elements are inserted and deleted based on it's priority are called [1 A.Priority queue B.preference queue C.Deque D.circular queue 20.when do you say "a stack is full"? 1 A.top=size B.top==size C.top=size+1 D.none 21. Which data structures don't obey FIFO strategy? 1 B.stack A.arrav C.linked list D.none 22. Which of the following implementation of priority queue is efficient? 1 A.multi-queue B.circular queue C.single linked list D.double linked list 23. A queue in which elements are inserted and deleted based on priority is called ſ 1 A.important queue C.priority queue B.circular queue D.none 24. Which of the following symbol is pushed onto the stack before converting a parenthesized expression to postfix expression? 1 A.'{' B.')' C.'(' D.'}' 25.CPU uses which of the following data structures during execution of multiple programs at a time. 1 C.tree D.arrav A.stack B.queue 26. When we consider starting index of queue is "0".then which of the following conditions are used to chech "queue full" condition? 1 A.rear=length B.rear==length C.rear = (length - 1)D.none 27. How many minimum number of moves are needed to transfer 5 disks on a source tower to destination tower? Γ 1 A.8 B.30 C.32 D.31 28.In which of the following data structures insertion is not possible in the middle? 1 Γ C.stack B.linked list D.none A.array 29. During recursive function calls computer utilizes? 1 A.queue **B**.array C.stack D.linked list 30.which of the following operations is not possible in input-restricted deque?] Γ A.deletion at front B.insertion at front C.deletion at rear D.insertion at rear 31. which of the following operations is not possible in output-restricted deque? 1 A.deletion at front B.insertion at front C.deletion at rear D.insertion at rear 32.In multiple-queues with matrix representation of priority queue rows represent? 1 ſ A.length of every queue **B**.priority C.element count D.none 33.What is dynamic stack? 1 ſ

A. stack implement	tation with array	B. A.stack impleme	entation with linked lis	st
C. A.stack implem	entation with circular q	ueue D.none		
34.In which of the following	ng data structures key-	value pairs exist?	[]
A.hash table	B.arrays	C.stacks	D.queues	
35. Which open addressin	g technique is free from	clustering problems?	[]
A. Linear probing	B. Quadratic probin	ng C. Double hashing	D. Rehashing	
36. A hash function f defi	ned as $f(\text{key}) = \text{key MC}$	D7, with linear probin	g, is used to insert the	e keys
37, 38, 72, 48, 98, 11, 56	into a table indexed from	m 0 to 6. 11 will be stor	red in the location[]
A. 3	B. 4	C. 5	D. 6	
37. The result of two keys	hashing into the same	bucket (index position	D)? []
A.collision	B.clash	C.error	D.none	
38. To store an item in a h	ash table, we use?		[]
A.hash table	B .hash function	C.dictionary	D.none	
39. Escalator is a real time	e example for?	·	[]
A.stack	B.array	C.circular queue	D.none	
40.Which data structure is	used internally by prin	ter while printing num	ber of documents?[]
A.stack	B.queue	C.array	D.none	

<u>UNIT 3</u>

TREES AND GRAPHS

1. In Binary Search if the S	earch element is greate	er than the mid then the	e condition is	[]
A. low = mid $+1$	B. high $=$ mid-1	C. mid = $(low+high)$)/2 D. N	one
2. The Binary Search Algor	rithms needs theelemer	nts to be in (Order	[]
A. Ascending	B. Random	C. Both	D. None	
3. BFS makes use of				[]
A. Stack	B. Queue	C. List	D. Heap	
4. DFS makes use of				[]
A. Stack	B. Queue	C. List	D. Heap	
5. Topological Sorting is po	ossible only with			[]
A. DAGs	B. Directed Graphs	C. Cyclic Graphs	D. All	
6. A Graph where each vert	tex is connected to all o	other vertices is called_		[]
A. Completely Con	nected B. Directed	Graphs C. Cyclic Gr	aphs D. A	11
7. All Trees are				[]
A. Binary Trees	B. Arrays	C. Graphs	D. Heaps.	
8. In an M-ary Tree with M	I value as 2 is called as	s Tree		[]
A. Binary	B. 3-ary Tree	C. Skewed Tree	D. Full Bina	ry Tree
9. In Binary tre	e all the leaf nodes will	ll be all the same level		[]
A. Complete	B. Full	C. Skewed	D. All	
10 are height	balanced trees.			[]
A. AVL	B. Red-Black	C. Splay Trees	D. B-Trees	
11. In a Complete Binary T	ree if a Node is at inde	ex I then its root is at		[]
A. i/2	B. 2I	C. 2I+1	D. 2I+2	
12. In a Complete Binary T	ree if a Node is at inde	x I then its left child is	at	[]
A. i/2	B. 2I	C. 2I+1	D. 2I+2	
DATA STRUCTURES				Page 10

13. In a Complete Binary	Tree if a Node is at inc	lex I then its right child	is at [
A. i/2	B. 2I	C. 2I+1	D. 2I+2	L
14. A binary tree is genera				50. 24. The
number of nodes in the lef			,, -, -, -, -, -, -, -, -, -, -, -,	1
A. (4, 7)	B. (7, 4)	C. (8, 3)	D. (3, 8)	L
15. A BST contains the va				values
are printed. The valid outp				1
A. 53124786	B. 53126487	C. 53241678	D. 53124768	L
16. In traversa			[1
A. a preorder	B. an inorder	C. a postorder	D. A. or B.	L
17. Which of the following		-		r?
	S duversur teeninques		In ascenting order]
A. Postorder	B. Inorder	C. Preorder	D. All of a, b, c	
18. A binary tree has a hei]
A. 31	B. 15	C. 5	D. 1	1
19.A list of integers is read				ed and the
integers are printed. Which				
integers are printed. Which	n uaversar would print	the result in the origina]
A. Preorder	B. Postorder	C. Inorder	D. None of the	-
20.A binary tree T h as n l]
A. $\log 2 n$	B. <i>n</i> − 1	C. n	D. 2n	1
21. A binary tree where ev				а
strictly binary tree. Such a]	
A. cannot have mo			L	L
B. has exactly 19 n				
C. has exactly 17 n				
D. cannot have mo				
22. An edge that has ident		d a	[]
A. Multi-path	B. Loop	C. Cycle	D. Multi-edge	L
23. The total number of ed	*	•	[]
A. In-degree	B. Out-degree	C. Degree	D. None of thes	
24. A graph in which there	-	U U		1
A. Complete graph	*	•	D. In-directed g	raph
25. The number of edges t	U I	U I	I in anotica g]
A. In-degree	B. Out-degree	C. Degree	D. source	1
26. The number of distinct	e	e	D. source	1
A. 15	B. 10	C. 7	D. 9	.]
27.9. Which is the most a		- · ·	D.)	1
<i>X</i> : depth-first search 1: hea		in the following pairs:	L	.]
<i>Y</i> : breadth-first search 2: q	*			
Z: sorting 3: stack	ucuc			
A. <i>X</i> –1, <i>Y</i> –2, <i>Z</i> –3	P V 3 V 1 7 2	C V 3 V 2 7 1	D V 2 V 3 7	1
A. A-1, I-2, Z-3 28.elements arranged in hi	B. X -3, Y -1, Z -2		D. <i>X</i> –2, <i>Y</i> –3, <i>Z</i> –	_
A.tree			L D.linked list	
A.uee	B.graph	C.array	D.IIIKeu list	
DATA STRUCTURES			F	Page 11

		(DUESTION BAN	IK	2016
29.a vertex with no edges in	ncident on it is called			ſ	1
A.isolated vertex	B.disjointed vertex	C.special vertex	D.none	L	-
30. A graph which doesn't of	U	or parallel edges is cal	led	[]
A.simple graph	B.plain graph	C.acyclic graph	D.none	_	-
31. If every vertex in a grap	h is connected with all	other vertices then it i	s called	[]
A.complete graph		C.connected graph	D.simple grap	ph	
32."map colouring" is an ap	plication of which of t	he following data struc	ctures	[]
A.tree	B.graph	C.array	D.linked list		
33. Which of the following	is associated with grap	h?		[]
A.BFS	B.DFS	C.cycle	D.all		
34. Queue is used in which	of the following graph	traversal techniques		[]
A.BFS	B.DFS	C.Inorder traversal	D.post order	trav	ersal
35. Stack is used in which c	of the following graph t	raversal techniques		[]
A.BFS	B.DFS	C.Inorder traversal	D.post order	trav	ersal
36."shortest path finding" is	s an application of ?			[]
A.tree	B.graph	C.binary tree	D.none		
37. If there is a path betwee	n any two vertices in a	graph then it is called		[]
A.simple graph	B.connected graph	C.complete graph	D.path graph		
38. Which way of tree repre	esentation is efficient?			[]
A.array	B.linked list	C.circular queue	D.stack		
39. Two or more nodes with	n a same parent is calle	d		[]
A.siblings	B.twins	C.children	D.both a&b		
40. A tree in which no node	can have more than tw	o children is called		[]
A.binary tree	B.skewed tree	C.binary search tree	D.all		

SORTING

1) The worst case occur in linear search algorithm when	[]
A. Item is somewhere in the middle of the array		
B. Item is not in the array at all		
C. Item is the last element in the array		
D. Item is the last element in the array or item is not there at all		
2) If the number of records to be sorted is small, then sorting can be efficient.	[]
A. Merge B. Heap C. Selection D. Bubb	ole	
3) The complexity of sorting algorithm measures the as a function of the nu	umber n o	f items to
be sorter.	[]
A. average time B. running time		
C. average-case complexity D. case-complexity		
4) Which of the following is not a limitation of binary search algorithm?	[]
A. must use a sorted array		
B. requirement of sorted array is expensive when a lot of insertion and delet	tions are	needed
C. there must be a mechanism to access middle element directly		
D. binary search algorithm is not efficient when the data elements more than	n 1500.	
DATA STRUCTURES	Pa	ge 12

		(DUESTION BAN	IK 20	16
5) The Average case occurs	s in linear search algori	ithm		[]
	newhere in the middle			L	1
		of the allay			
B. when item is not	•				
	last element in the arra				
	lement in the array or i			-	
6) Binary search algorithm				Ĺ]
A. sorted linked list		B. sorted binary tree	S		
C. sorted linear arra	У	D. pointer array		_	_
7) Complexity of linear sea A. O(n)	rch algorithm is			[]
A. O(n)	B. O(logn)	C. O(n2)	D. O(n logn)		
8) Sorting algorithm can be				[]
A. Simple algorithm	n which require the ord	ler of n2 comparisons to	o sort n items.		
B. Sophisticated alg	orithms that require th	e O(nlog2n) compariso	ons to sort items.		
C. Both of the above	e	_			
D. None of the above	ve				
9) The complexity of bubbl	e sort algorithm is			[]
A. $O(n)$		\overline{C} . O(n2)	D. O(n logn)	-	-
10) State True or False for				Γ	1
) Internal sorting are applied			ed is small enou	gh that	the
sorting can take place withi				on that	
ii) The time required to read		to be significant in ev	aluating the per	forman	ce of
internal sorting.			aluating the per-	lorman	
	D : True :: Felee	C : Eslas :: True	D : Eslas :: 1	Dalaa	
		C. i-False, ii-True			-
(1) The complexity of mer	ge sort algorithm is				
			$\mathbf{D} \circ (1)$	[]
12) is putting an e					
12) is putting an e list.	lement in the appropria	ate place in a sorted list	t yields a larger	sorted (
12) is putting an e list. A. Insertion	lement in the appropris B. Extraction	ate place in a sorted list C. Selection	t yields a larger D. Distributio	sorted (
 12) is putting an e list. A. Insertion 13)order is the best 	B. Extraction	ate place in a sorted list C. Selection ing algorithm which so	t yields a larger D. Distributic rts n item.	sorted (
12) is putting an e list. A. Insertion 13)order is the best A. O(n logn)	B. Extraction possible for array sort B. O(n2)	C. Selection ing algorithm which so C. O(n+logn)	D. Distribution D. Distribution Tts n item. D. O(logn)	sorted o [n [order]
12) is putting an e list. A. Insertion 13)order is the best A. O(n logn)	B. Extraction possible for array sort B. O(n2)	C. Selection ing algorithm which so C. O(n+logn)	t yields a larger D. Distributio orts n item. D. O(logn)	sorted o [n [order]
12) is putting an e list. A. Insertion 13)order is the best A. O(n logn)	B. Extraction possible for array sort B. O(n2)	C. Selection ing algorithm which so C. O(n+logn)	t yields a larger D. Distributio orts n item. D. O(logn)	sorted o [n [order]
12) is putting an e list. A. Insertion 13)order is the best A. O(n logn)	B. Extraction B. Extraction possible for array sort B. O(n2) pairs of elements which	C. Selection ing algorithm which so C. O(n+logn) are out of order, until	t yields a larger D. Distributio orts n item. D. O(logn)	sorted o [on [main. [order]
 12) is putting an elist. A. Insertion 13) order is the best A. O(n logn) 14) is rearranging p A. Insertion 	lement in the appropria B. Extraction possible for array sort B. O(n2) pairs of elements which B. Exchange	C. Selection ing algorithm which so C. O(n+logn)	t yields a larger D. Distributio orts n item. D. O(logn) no such pairs re	sorted o [on [main. [order]
 12) is putting an elist. A. Insertion 13) order is the best A. O(n logn) 14) is rearranging p A. Insertion 15) is the method 	lement in the appropria B. Extraction possible for array sort B. O(n2) pairs of elements which B. Exchange used by card sorter?	ate place in a sorted list C. Selection ing algorithm which so C. O(n+logn) are out of order, until C. Selection	t yields a larger D. Distributio orts n item. D. O(logn) no such pairs re D. Distributio	sorted o [on [main. [order]
 12) is putting an elist. A. Insertion 13) order is the best A. O(n logn) 14) is rearranging p A. Insertion 15) is the method A. Radix sort 	lement in the appropria B. Extraction possible for array sort B. O(n2) pairs of elements which B. Exchange used by card sorter? B. Insertion	ate place in a sorted list C. Selection ing algorithm which so C. O(n+logn) are out of order, until C. Selection C. Heap	t yields a larger D. Distributio orts n item. D. O(logn) no such pairs re D. Distributio D. Quick	sorted o [on [main. [order]
 12) is putting an e ist. A. Insertion 13) order is the best A. O(n logn) 14) is rearranging p A. Insertion 15) is the method A. Radix sort 16) Which of the following 	 lement in the appropria B. Extraction possible for array sort B. O(n2) pairs of elements which B. Exchange used by card sorter? B. Insertion sorting algorithm is of 	ate place in a sorted list C. Selection ing algorithm which so C. O(n+logn) n are out of order, until C. Selection C. Heap f divide and conquer ty	t yields a larger D. Distributio orts n item. D. O(logn) no such pairs re D. Distributio D. Quick pe?	sorted o [n [main. [n [order]
 12) is putting an elist. A. Insertion 13)order is the best A. O(n logn) 14) is rearranging p A. Insertion 15) is the method A. Radix sort 16) Which of the following A. Bubble sort 	 lement in the appropria B. Extraction possible for array sort B. O(n2) pairs of elements which B. Exchange used by card sorter? B. Insertion sorting algorithm is of B. Insertion sort 	ate place in a sorted list C. Selection ing algorithm which so C. O(n+logn) are out of order, until C. Selection C. Heap f divide and conquer ty C. Merge sort	t yields a larger D. Distributio orts n item. D. O(logn) no such pairs re D. Distributio D. Quick pe? D. Selection s	sorted o [m [main. [n [sort	order]]]]
 12) is putting an elist. A. Insertion 13)order is the best A. O(n logn) 14) is rearranging p A. Insertion 15) is the method A. Radix sort 16) Which of the following A. Bubble sort 	 lement in the appropria B. Extraction possible for array sort B. O(n2) pairs of elements which B. Exchange used by card sorter? B. Insertion sorting algorithm is of B. Insertion sort 	ate place in a sorted list C. Selection ing algorithm which so C. O(n+logn) are out of order, until C. Selection C. Heap f divide and conquer ty C. Merge sort	t yields a larger D. Distributio orts n item. D. O(logn) no such pairs re D. Distributio D. Quick pe? D. Selection s	sorted o [m [main. [n [sort	order]]]]
 12) is putting an elist. A. Insertion 13)order is the best A. O(n logn) 14) is rearranging p A. Insertion 15) is the method A. Radix sort 16) Which of the following A. Bubble sort 17) sorting algorith 	 lement in the appropria B. Extraction possible for array sort B. O(n2) pairs of elements which B. Exchange used by card sorter? B. Insertion sorting algorithm is of B. Insertion sort m is frequently used ways 	ate place in a sorted list C. Selection ing algorithm which so C. O(n+logn) n are out of order, until C. Selection C. Heap f divide and conquer ty C. Merge sort then n is small where n	 b. Distribution c. Distribution c. D. O(logn) no such pairs re D. Distribution D. Quick pe? D. Selection sist total number 	sorted o [m [main. [n [sort	order]]]]
 12) is putting an elist. A. Insertion 13)order is the best A. O(n logn) 14) is rearranging p A. Insertion 15) is the method A. Radix sort 16) Which of the following A. Bubble sort 17) sorting algorith A. Heap 	 lement in the appropria B. Extraction possible for array sort B. O(n2) pairs of elements which B. Exchange used by card sorter? B. Insertion sorting algorithm is of B. Insertion sort m is frequently used w B. Insertion 	ate place in a sorted list C. Selection ing algorithm which so C. O(n+logn) n are out of order, until C. Selection C. Heap f divide and conquer ty C. Merge sort then n is small where n C. Bubble	 b. Distribution c. Distribution c. D. O(logn) no such pairs re D. Distribution D. Quick pe? D. Selection sist total number D. Quick 	sorted o [m [main. [n [sort	order]]]]
 12) is putting an elist. A. Insertion 13)order is the best A. O(n logn) 14) is rearranging p A. Insertion 15) is the method A. Radix sort 16) Which of the following A. Bubble sort 17) sorting algorith A. Heap 18) Which of the following 	B. Extraction B. Extraction possible for array sort B. O(n2) bairs of elements which B. Exchange used by card sorter? B. Insertion sorting algorithm is of B. Insertion sort m is frequently used w B. Insertion sorting algorithm is of	ate place in a sorted list C. Selection ing algorithm which so C. O(n+logn) n are out of order, until C. Selection C. Heap f divide and conquer ty C. Merge sort then n is small where n C. Bubble f priority queue sorting	t yields a larger D. Distribution orts n item. D. O(logn) no such pairs re D. Distribution D. Quick pe? D. Selection s is total number D. Quick type?	sorted o [n [main. [on [sort of elen [order]]]]
 12) is putting an elist. A. Insertion 13)order is the best A. O(n logn) 14) is rearranging p A. Insertion 15) is the method A. Radix sort 16) Which of the following A. Bubble sort 17) sorting algorith A. Heap 18) Which of the following A. Bubble sort 	 lement in the appropria B. Extraction possible for array sort B. O(n2) pairs of elements which B. Exchange used by card sorter? B. Insertion sorting algorithm is of B. Insertion sorting algorithm is of B. Insertion sorting algorithm is of B. Insertion 	ate place in a sorted list C. Selection ing algorithm which so C. O(n+logn) are out of order, until C. Selection C. Heap f divide and conquer ty C. Merge sort then n is small where n C. Bubble f priority queue sorting C. Merge sort	t yields a larger D. Distribution orts n item. D. O(logn) no such pairs re D. Distribution D. Quick pe? D. Selection s is total number D. Quick type? D. Selection s	sorted o [n [main. [on [sort of elen [order]]]]
 12) is putting an elist. A. Insertion 13)order is the best A. O(n logn) 14) is rearranging p A. Insertion 15) is the method A. Radix sort 16) Which of the following A. Bubble sort 17) sorting algorith A. Heap 18) Which of the following A. Bubble sort 	 lement in the appropria B. Extraction possible for array sort B. O(n2) pairs of elements which B. Exchange used by card sorter? B. Insertion sorting algorithm is of B. Insertion sorting algorithm is of B. Insertion sorting algorithm is of B. Insertion 	ate place in a sorted list C. Selection ing algorithm which so C. O(n+logn) are out of order, until C. Selection C. Heap f divide and conquer ty C. Merge sort then n is small where n C. Bubble f priority queue sorting C. Merge sort	t yields a larger D. Distribution orts n item. D. O(logn) no such pairs re D. Distribution D. Quick pe? D. Selection s is total number D. Quick type? D. Selection s	sorted o n main. [n [sort of elen [sort [sort	order]]] nents.]
 12) is putting an elist. A. Insertion 13)order is the best A. O(n logn) 14) is rearranging p A. Insertion 15) is the method A. Radix sort 16) Which of the following A. Bubble sort 17) sorting algorith A. Heap 18) Which of the following A. Bubble sort 19) Which of the following 	 lement in the appropria B. Extraction possible for array sort B. O(n2) pairs of elements which B. Exchange used by card sorter? B. Insertion sorting algorithm is of B. Insertion sort m is frequently used w B. Insertion sorting algorithm is of B. Insertion sorting algorithm is of B. Insertion 	ate place in a sorted list C. Selection ing algorithm which so C. O(n+logn) are out of order, until C. Selection C. Heap f divide and conquer ty C. Merge sort then n is small where n C. Bubble f priority queue sorting C. Merge sort	t yields a larger D. Distribution orts n item. D. O(logn) no such pairs re D. Distribution D. Quick pe? D. Selection s is total number D. Quick type? D. Selection s	sorted o [n [main. [on [sort of elen [order]]]]
 12) is putting an elist. A. Insertion 13)order is the best A. O(n logn) 14) is rearranging p A. Insertion 15) is the method A. Radix sort 16) Which of the following A. Bubble sort 17) sorting algorith A. Heap 18) Which of the following A. Bubble sort 	 lement in the appropria B. Extraction possible for array sort B. O(n2) pairs of elements which B. Exchange used by card sorter? B. Insertion sorting algorithm is of B. Insertion sort m is frequently used w B. Insertion sorting algorithm is of B. Insertion sorting algorithm is of B. Insertion 	ate place in a sorted list C. Selection ing algorithm which so C. O(n+logn) are out of order, until C. Selection C. Heap f divide and conquer ty C. Merge sort then n is small where n C. Bubble f priority queue sorting C. Merge sort	t yields a larger D. Distribution orts n item. D. O(logn) no such pairs re D. Distribution D. Quick pe? D. Selection s is total number D. Quick type? D. Selection s	sorted o n main. [n [sort of elen [sort [sort	order]]] nents.]
 12) is putting an elist. A. Insertion 13)order is the best A. O(n logn) 14) is rearranging p A. Insertion 15) is the method A. Radix sort 16) Which of the following A. Bubble sort 17) sorting algorith A. Heap 18) Which of the following A. Bubble sort 19) Which of the following A. The list must be 	lement in the appropria B. Extraction possible for array sort B. O(n2) bairs of elements which B. Exchange used by card sorter? B. Insertion sorting algorithm is of B. Insertion sort m is frequently used w B. Insertion sorting algorithm is of B. Insertion sorting algorithm is of B. Insertion sorting algorithm is of B. Insertion sort is not the required cor	ate place in a sorted list C. Selection ing algorithm which so C. O(n+logn) are out of order, until C. Selection C. Heap f divide and conquer ty C. Merge sort then n is small where n C. Bubble f priority queue sorting C. Merge sort	t yields a larger D. Distribution orts n item. D. O(logn) no such pairs re D. Distribution D. Quick pe? D. Selection s is total number D. Quick type? D. Selection s h algorithm?	sorted o n main. [n [sort of elen [sort [sort	order]]] nents.]
 12) is putting an elist. A. Insertion 13) order is the best A. O(n logn) 14) is rearranging p A. Insertion 15) is the method A. Radix sort 16) Which of the following A. Bubble sort 17) sorting algorith A. Heap 18) Which of the following A. Bubble sort 19) Which of the following A. The list must be B. There should be 	 lement in the appropria B. Extraction possible for array sort B. O(n2) pairs of elements which B. Exchange used by card sorter? B. Insertion sorting algorithm is of B. Insertion sort m is frequently used w B. Insertion sorting algorithm is of B. Insertion sort is not the required cor sorted the direct access to the 	ate place in a sorted list C. Selection ing algorithm which so C. O(n+logn) n are out of order, until C. Selection C. Heap f divide and conquer ty C. Merge sort when n is small where n C. Bubble f priority queue sorting C. Merge sort ndition for binary search	t yields a larger D. Distribution orts n item. D. O(logn) no such pairs re D. Distribution D. Quick pe? D. Selection s is total number D. Quick type? D. Selection s h algorithm?	sorted o n main. [n [sort of elen [sort [sort	order]]] nents.]
 12) is putting an elist. A. Insertion 13)order is the best A. O(n logn) 14) is rearranging p A. Insertion 15) is the method A. Radix sort 16) Which of the following A. Bubble sort 17) sorting algorith A. Heap 18) Which of the following A. Bubble sort 19) Which of the following A. The list must be B. There should be C. There must be m 	lement in the appropria B. Extraction possible for array sort B. O(n2) bairs of elements which B. Exchange used by card sorter? B. Insertion sorting algorithm is of B. Insertion sort m is frequently used w B. Insertion sorting algorithm is of B. Insertion sorting algorithm is of B. Insertion sort is not the required cor sorted the direct access to the echanism to delete and	ate place in a sorted list C. Selection ing algorithm which so C. O(n+logn) are out of order, until C. Selection C. Heap f divide and conquer ty C. Merge sort when n is small where n C. Bubble f priority queue sorting C. Merge sort adition for binary search	t yields a larger D. Distribution orts n item. D. O(logn) no such pairs re D. Distribution D. Quick pe? D. Selection s is total number D. Quick type? D. Selection s h algorithm?	sorted o n main. [n [sort of elen [sort [sort	order]]] nents.]
 13)order is the best A. O(n logn) 14) is rearranging p A. Insertion 15) is the method A. Radix sort 16) Which of the following A. Bubble sort 17) sorting algorith A. Heap 18) Which of the following A. Bubble sort 19) Which of the following A. The list must be B. There should be C. There must be m D. Number values s 	 lement in the appropria B. Extraction possible for array sort B. O(n2) pairs of elements which B. Exchange used by card sorter? B. Insertion sorting algorithm is of B. Insertion sort m is frequently used w B. Insertion sorting algorithm is of B. Insertion sort is not the required cor sorted the direct access to the echanism to delete and hould only be present 	ate place in a sorted list C. Selection ing algorithm which so C. O(n+logn) are out of order, until C. Selection C. Heap f divide and conquer ty C. Merge sort when n is small where n C. Bubble f priority queue sorting C. Merge sort adition for binary search	t yields a larger D. Distribution orts n item. D. O(logn) no such pairs re D. Distribution D. Quick pe? D. Selection s is total number D. Quick type? D. Selection s h algorithm?	sorted o n main. [n [sort of elen [sort [sort	order]]]] nents.]]
 12) is putting an elist. A. Insertion 13)order is the best A. O(n logn) 14) is rearranging p A. Insertion 15) is the method A. Radix sort 16) Which of the following A. Bubble sort 17) sorting algorith A. Heap 18) Which of the following A. Bubble sort 19) Which of the following A. The list must be B. There should be C. There must be m 	 lement in the appropria B. Extraction possible for array sort B. O(n2) pairs of elements which B. Exchange used by card sorter? B. Insertion sorting algorithm is of B. Insertion sort m is frequently used w B. Insertion sorting algorithm is of B. Insertion sort is not the required cor sorted the direct access to the echanism to delete and hould only be present 	ate place in a sorted list C. Selection ing algorithm which so C. O(n+logn) are out of order, until C. Selection C. Heap f divide and conquer ty C. Merge sort when n is small where n C. Bubble f priority queue sorting C. Merge sort adition for binary search	 b. Distribution c. Distribution c. D. O(logn) no such pairs re D. Distribution D. Quick pe? D. Selection sist total number D. Quick type? D. Selection sin algorithm? 	sorted o [n [main. [ort of elen [ort [ort	order]]] nents.]

		QUESTION BANK	2016
21) Finding the location of a given item in a colle	ection of items is call	ed []
A. Discovering B. Finding	C. Searching	D. Mining	Ţ
22) Which of the following is an external sorting	?	[]
A. Insertion Sort B. Bubble Sort 23) Very slow way of sorting is	C. Merge Sort	D. Tree Sort	1
A. Insertion sort B. Heap sort	C. Bubble sort	D. Quick sort]
24) Which of the following is an internal sorting	?	[]
A. Tape Sort B. 2-way Merge So			
25) Sorting a file F usually refers to sorting F wit	in respect to a particu]
A. Basic key B. Primary key	C. Starting key	D. Index key	J
26) The time complexity of quick sort is		[]
A. O(n) B. O(logn) 27) Selection sort first finds the element in	C. O(n2)		
27) Selection soft first finds the clement in	i the list and put it in]
A. Middle element B. Largest element	C. Last element	D. Smallest element	
28) Quick sort is also known as	1-11]]
A. merge sort B. tree sort C. s 29) The operation that combines the element is o		6	element
is called	i i i una D in u single]
A. Inserting B. Mixing	C. Merging	D. Sharing	
30) A tree sort is also known as sort. A. quick B. shell	C. heap	D. selection]
31) sorting is good to use when alphabe]
A. Merge B. Heap		D. Bubble	1
32) The easiest sorting is		[]
A. quick sort B. shell sort 33) Which of the following sorting algorithm is o	*	D. selection sort	1
A. Bubble sort B. Insertion sort]
34) Merging k sorted tables into a single sorted ta]
A. k way merging B. k th merge	C. k+1 merge	D. k-1 merge	
35) The function used to modify the way of sortin]
A. Indexing function C. Addressing function	B. Hash function D. All of the abo		
36) If the number of record to be sorted large and			fficient.
	· ···· ····· ·························	[]
A. Merge B. Heap	C. Radix	D. Bubble	
37) The total number of comparisons in a bubble $A = O(r_{1} h_{2} r_{1})$		[D. O(n)]
A. O(n logn) B. O(2n) 38) If the number of record to be sorted large and	C. O(n2) I the key is long ther	D. $O(n)$	
be efficient.	t the key is long, the]
A. Merge B. Heap	C. Quick	D. Bubble	
39) The time complexity of heap sort is		[]
A. O(n) B. O(logn)	C. O(n2)	D. O(n logn)	1
40) The complexity of selection sort is A. O(n) B. O(n2)	C. O(n logn)	[D. O(logn)]
D. O(112)		D. 0(10g11)	

SEARCHING

1.	In linear search algorithm the Worst case occurs when	[]
	A. The item is somewhere in the middle of the array		
	B. The item is not in the array at all		
	C. The item is the last element in the array		
	D. The item is the last element in the array or is not there at all		
2.	For an algorithm the complexity of the average case is	ſ]
	A. Much more complicated to analyze than that of worst case	L	ı
	B. Much more simpler to analyze than that of worst case		
	C. Sometimes more complicated and some other times simpler than that of worst c	ase	
	D. None or above	use	
3.		[]
5.	A. $O(n)$ B. $O(\log n)$ C. $O(n2)$ D. $O(n \log n)$	L	1
4.	When determining the efficiency of algorithm the time factor is measured by	г	1
4.	A. Counting microseconds	L]
	B. Counting the number of key operations		
	C. Counting the number of statements		
F	D. Counting the kilobytes of algorithm	r	1
5.	The elements of an array are stored successively in memory cells because	[]
	A. by this way computer can keep track only the address of the first element and the	ie addre	esses
	of other elements can be calculated	· 11	
	B. the architecture of computer memory does not allow arrays to store other than s	erially	
	C. both of above		
6	D. none of above	r	1
6.	Which of the following data structure is not linear data structure?	l]
_	A. Arrays B. Linked lists C. Both of above D. None of abo	ove	
7.	The Average case occur in linear search algorithm	L]
	A. When Item is somewhere in the middle of the array		
	B. When Item is not in the array at all		
	C. When Item is the last element in the array		
-	D. When Item is the last element in the array or is not there at all	_	_
8.	• •	Ĺ]
	A. Processor and memory B. Complexity and capacity		
	C. Time and space D. Data and space	_	_
9.	Finding the location of the element with a given value is:	[]
	A. Traversal B. Search C. Sort D. None of abo	ove	
10.	Which of the following case does not exist in complexity theory	[]
	A. Best case B. Worst case C. Average case D. Null case		
11.	The operation of processing each element in the list is known as	[]
	A. Sorting B. Merging C. Inserting D. Traversal		
12.	The complexity of Binary search algorithm is	[]
	A. $O(n)$ B. $O(\log)$ C. $O(n2)$ D. $O(n \log n)$		
13.	The Searching technique that takes $o(1)$ time to find a data is	[]
	A.Linear Search B.Binary Search C.Hashing D.Tree Search		
14.	A technique for direct search is	[]
	A. Binary Search B.Linear Search C.Tree search D. Hashing		

		QUESTION BANK	2016
15. The Complexity of searching an element form	a set n elements using	g Binary Search algor	ithm is
A.O(n2) B.O(log n) 16.The worst case occur in linear search algorithm	C.O(n2) m when	D.O(n log n)]
A. Item is somewhere in the middle of the B. Item is not in the array at all		L	J
C. Item is the last element in the array D. Item is the last element in the array or	item is not there at all		
17. The Average case occurs in linear search algo A. when item is somewhere in the middle	orithm	[]
B.when item is not the array at all C. when item is the last element in the arr	-		
D. Item is the last element in the array or	•		
18. In,Search start at the beginning of the li			
]]
A. Linear search B. Binary search	C. Hash Search	D. Binary Tree search	
19. If h is any hashing function and is used to has	•		
where n<=m, the expected number of collision	ons involving a particu	ılar key x is []
A. less than 1 B. less than n	C. less than m	D. less than n/2	
20. A mathematical-model with a collection of	operations defined on	that model is called	
	D 14	. []
A. Data Structure	B. Abstract Data T	ype	
C. Primitive Data Type	D. Algorithm	F	г
21. A technique for direct search is	C Trac Castal	D Hashira]
A. Binary Search B. Linear Search 22. The searching technique that takes $O(1)$ time	C. Tree Search	D. Hashing	1
22. The searching technique that takes O (1) time A. Linear Search B. Binary Search	C. Hashing	D. Tree Search]
23.The complexity of searching an element fr	•		arch
algorithm is	oni a set of li elefille	cines using billiary se	arcn]
A. O(n) B. O(log n)	C. O(n2)	D. $O(n \log n)$	1
24. The goal of hashing is to produce a search that		2. S(n 105 n)	1
A. O(1)time B. O(n2)time	C. O(log n)time	D. $O(n \log n)$ tim	e
25. A linear collection of data elements where the			
	0	- I]
A. linked list B. node list	C. primitive list	D. None of these	-
26. Which of the following case does not exist in		[]
A. Best case B. Worst case	C. Average case	D. Null case	
27. The worst case occur in linear search algorith		[]
A. Item is somewhere in the middle of the	e array		
B. Item is not in the array at all			
C. Item is the last element in the array			
D. Item is the last element in the array or		F	г
28. The average case occur in linear search algorithms in the widdle of the		[]
A. Item is somewhere in the middle of the	e array		
B. Item is not in the array at all			
C. Item is the last element in the array or	is not there at all		
D. Item is the last element in the array or 29. The complexity of linear search algorithm is	is not mere at all	Г	1
A. $O(n)$ B. $O(\log n)$	C. O(n2)	D. $O(n \log n)$]
30. The complexity of binary search algorithm is			1
so. The complexity of ondry search argorithm is		L	1
DATA STRUCTURES		Da	ge 16
		Fd	ye io

		QUESTION BANK	2016
A. O(n)B. O(log n)31. Binary search algorithm cannot be applied A. sorted linked listB. sorted binary tree32. Which of the following is not the required conditional		search algorithm?	
 A. The list must be sorted B. there should be the direct access to the r C. there must be mechanism to delete and / D. none of above 33 is the common programming technique to the result of the source of	or insert elements in	y sublist 1 list	[] []
A. Cloning B. Bit Shifting 34. The hash String() member function is called by whenever a function product a convert a	other member funct		ble class
whenever a function needs to convert a A. a hash number key to a key C. a key to an Index	B. key to a hash nu D. None of these	ımber key	
35. An algorithm that calls itself directly or indirecA. Sub algorithmC. Polish notation	B. Recursion D. Traversal algori	thm	[]
36. When new data are to be inserted into a data st	ructure, but there is r	no available space;	this situation
is usually called A. underflow B. overflow	C. houseful	D. saturated	
37. An application iterates the hashtable by calling	the and	member function	
A. hasNext() and hasDelete()C. Both A and B	B. hasNext() andD. None of these	l getNextKey()	[]
 38. The time factor when determining the efficience A. Counting microseconds B. Counting the number of key operations C. Counting the number of statements D. Counting the kilobytes of algorithm 39. A hash table of length 10 uses open addressing probing. After inserting 6 values into an empty has 	with hash function h	n(k)=k mod 10, and	[] linear
8 9			
Which one of the following choices gives a posinserted in the table?A. 46, 42, 34, 52, 23, 33B. 34, 42, 23, 52, 33, 46	sible order in which	•	d have been []

DATA STRUCTURES

Page 17

		QUESTION B	ANK 2	016
23, 34, 52	ces of the key values us table shown above? C. 30	ing the same hash D. 40	function [and]

Prepared by: Ms. Priyadarshini R, Mr Sainath N