SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code :DM (15A05302) Course & Branch: B.Tech - CSE

Year & Sem: II- B.Tech& I-Sem

Regulation:R15

UNIT – I

MATHEMATICAL LOGIC

1. a) Explain conjuction and disjuction with suitable examples. 5M	
b) Define tautology and contradiction with examples.	5M
2. Show that (a) $(\neg P \land \neg Q \land R) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$ 5M	1
$(b)(P \to Q) \to Q) \Rightarrow P \lor Q \text{without constructing truth table} \qquad 5M$	
3. a)Show that $P \rightarrow Q, P \rightarrow R, Q \rightarrow \neg R, P$ are consistent 4M	
b) Give the converse, inverse and contrapositive of the proposition $P \rightarrow (Q \land R)$. 3M
c) Show that $(P \to Q) \land ((Q \to R) \Longrightarrow (P \to Q) 3M$	
4. What is principle disjunctive normal form? Obtain the PDNF of	
$P \to ((P \to Q) \land \neg (\neg Q$	$(\vee \neg P)$) 10M
5. What is principle conjunctive normal form? Obtain the PCNF of	
$(\neg P \rightarrow R) \land (q)$	$Q \leftrightarrow P$) 10M
6. (a) Show that $S \lor R$ is a tautologically implied by	
$(P \lor Q) \land (P \to R) \land$	$(Q \rightarrow S) 5M$
(b)Show that $R \land (P \lor Q)$ is a valid conclusion from the premises	
$P \lor Q, Q \to R, P \to N$	<i>Iand</i> ¬M 5M
7. (a) Prove that $(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)(P(x) \land (\exists x)(Q(x))) = 5$	δM
(b) Show that $(\forall x)(P(x) \to Q(x)) \land (\forall x)(Q(x) \to R(x)) \Longrightarrow (\forall x)(P(x) \to R(x))$	5M
8. (a) Define Quantifiers and types of Quantifiers 6M	
(b) Show that $(\exists x) M(x)$ follows logically from the premises	

$$(\forall x)(H(x) \rightarrow M(x)) and (\exists x)H(x)$$
 4M

9. Use indirect method of proof to prove that

 $(\forall x)(P(x) \lor Q(x)) \Longrightarrow (\forall x)P(x) \lor (\exists x)Q(x) \ 10M$

- 10. (a) Define free and bound variables for predicate calculus. 2M
 - (b) Show that $\neg (P \rightarrow Q) \Rightarrow \neg Q 2M$
 - (c)Define NAND and NOR2M
 - (d)Define Exclusive disjunction with an example2M
- (e) Define the conditional proposition

2M

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code :DM (15A05302) Course & Branch: B.Tech - CSE

Year & Sem: II- B.Tech & I-Sem

Regulation:R15

UNIT II

SET THEORY

1. Show that for any two sets		
(a) $A \cap B = B \cap A$	3M	
(b) $A \cap A = A$	3M	
(c) $A - (A \cap B) = A - B$	4M	
2. (a)Let A = {x x is an integer and $1 \le x \le 5$ }	}, B = { 3, 4, 5, 17 }, and C = {1, 2, 3,	
$\}, \qquad \text{find } A \cap B, A \cap C, A \cup B, A \cup B$		5M
(b)Let A = $\{2, 3, 4\}$, B = $\{1, 2\}$, and C =	$\{4, 5, 6\}, \text{ find } A + B, B + C, A + B +$	С
		бM
3. (a) Prove that $A \cap (B \cup C) = (A \cap B) \cup$	$(A \cap C) 5M$	I
(b) Prove that $(A \cap B)' = A' \cup B'$	51	М
4. (a)Prove that Inclusion – Exclusion prin	nciple for two sets 5	М
(b) Let A and B be finite disjoint sets, the		М
5. If A = $\{1, 2, 3\}$, B = $\{4, 5\}$ C = $\{1, 2, 3,$	4, 5} then prove that $(C \times B) - (A \times B)$	B) =
$(B \times B)$	10	M
6. (a) Find how many integers between 1 and	nd 60 that are divisible by 2 nor by 3 and	d
nor by 5 also determine the number of	f integers divisible by 5 not by 2, not by	у
3 5M		
(b) Prove that $A - (B \cap C) = (A - B) \cup$		Л
7. A survey among 100 students shows that		
chocolate, straw berry . 50 students like var		•
13 like vanilla and chocolate, 11 like choco		/ and
vanilla and 5 like all of them. Find the follo	owing.	
1. Chocolate but not straw berry		
2. Chocolate and straw berry but not vannil		r
3. Vanilla or Chocolate but not straw berry	10M	L
8. Let $f: A \to B$, $g: B \to C$, $h: C \to D$ then p	prove that $ho(a \circ f) = (h \circ a) \circ f$	10M
9. (a) If $f: R \to R$ such that $f(x) = 2x+1$,		10101
then verify that $(gof)^{-1} = f^{-1}og$		
5M	9	
5111		

5M

- (b) Prove that for any real number x, if x is not an integer then $\lfloor x \rfloor + \lfloor -x \rfloor = -1$
- 10. (a) Define symmetric difference
 - (b) Define relation. Give an example.
 - (c) Define Equivalence relation
 - (d) Define power set. Give an example.
 - (e) Let R be the relation from the set A = $\{1, 3, 4\}$ on itself and defined by R = $\{(1, 1), (1, 3), (3, 3), (4, 4)\}$ the find the matrix of R

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (OBJECTIVE)

Subject with Code :DM (15A05302) Course & Branch: B.Tech - CSE

Year & Sem: II- B.Tech & I-Sem

Regulation:R15

UNIT I

MATHEMATICAL LOGIC

1. In the statement $P \rightarrow Q$, the statement P is called	[]
A) Consequent B) Antecedent C) Both A&B D)Sequent		
2. What is the negation of the statement "I went to my class yesterday"[]		
A) I did not go to my class yesterdayB) I was absent from my class yesterday		
C) It is not the case that I went to my class yesterday D) All the above		
3. Which of the following statement is well formed formula	[]
A) $P \to Q \to \land Q$ B) $(P \land Q) \to R$ C) $((Q \land (P \to Q)) \to R)$ D) None		
4. $((P \to Q) \lor \neg (P \to Q)) \land (P \to (P \to Q)) \Leftrightarrow [$		
A) T B) F C) Contingency D) Non		
5. $P \uparrow Q \Leftrightarrow $ []		
A) $P \land Q$ B) $\neg (P \lor Q)$ C) $\neg (P \land Q)$ D) $P \lor Q$		
6. The Rule CP is also called []		
A) Contradiction of proof B) Conditional proof C) Consistency of premises	D) r	ione
7. If $H_1, H_2,, H_m$ are the premises and their conjunction is identically false	e the	ı
The formulas $H_1, H_2,, H_m$ are called []	A)	
Consistent B) Tautology C) Inconsistent D) None		
8. The α and β are string of formulas. If α and β have at least one variable in		
Common then the sequent $\alpha \xrightarrow{s} \beta$ is	[]
A)String of formula B)String C) Sequent D) Axiom		
9. Symbolize the statement "Every apple is red"	[]
Discrete Mathematics		Page5

A) $(\exists x)(A(x))$	$\wedge R(x)) B(\forall x)$	$(A(x) \wedge R(x))$				
C) $(\exists x)(A(x) -$	$\rightarrow R(x))$ D) ($\forall x$	$P(A(x) \rightarrow R(x))$				
10. $\neg(\forall x)A(x)$		[]				
A) $(\forall x)A(x)$	B) $\neg(\exists x)A(x)$	C) $(\exists x) \neg A(x)$ D)	None			
11. A statement is a	declarative sente	ence that is			[
A) true	B) false	C) true & false	D) no	one		
12. A Formula of di A) DNF	sjunctions of min B) CNF C)PDNF	-	own as		[
13. pv7p=					[
A) P B)T	C)F	D)7P				
14. Let p: He is old	q:He is clever, w	rite the statement	"He is old b	ut not clever"	in symb	oli
form					[
A)p^q	B)p^7q	C)7p^7q	D)7(7p′	`7q)		
15. The proposition	p^p is equivalent	t to			[
A)1	В)р	C)7p D)none				
-			- to each oth	er[]		
-		called		er[] D) dua	1	
16. The connectives A)NAND	^ and v are also B) NOR	calledC) XC	R	D) dua		
16. The connectives A)NAND	^ and v are also B) NOR	calledC) XC	R	D) dua		
16. The connectives A)NAND	A and v are also B) NOR form of "All men a	calledC) XC	DR M(x):x is a i	D) dua men H(x):x is	mortal	-
16. The connectives A)NAND 17. The symbolic fo A)M(x)→H(x	A and v are also B) NOR form of "All men a	calledC) XC C) XC are mortal" where	DR M(x):x is a i	D) dua men H(x):x is	mortal	
16. The connectives A)NAND 17. The symbolic fo A)M(x)→H(x	A and v are also B) NOR form of "All men a	calledC) XC C = C where $M(x) \rightarrow H(x)$	DR M(x):x is a 1 C)(эx)(M(x)	D) dua men H(x):x is	mortal [D)none	-
16. The connectives A)NAND 17. The symbolic fo A)M(x)→H(x 18. 7(p→q)= A) 7pv7q	A and v are also B) NOR form of "All men a B)(x)[B) p^	called C) XC re mortal" where $M(x) \rightarrow H(x)]$ 7q C) p	DR M(x):x is a 1 C)(эx)(M(x) →q	D) dua men H(x):x is)→H(x)]	mortal [D)none	
16. The connectives A)NAND 17. The symbolic fo A)M(x)→H(x 18. 7(p→q)= A) 7pv7q	A and v are also B) NOR form of "All men a B)(x)[B) p^ en sits between m	called C) XC re mortal" where $M(x) \rightarrow H(x)]$ 7q C) p nadhu and mohan	DR M(x):x is a 1 C)(эx)(M(x) →q is a	D) dua men H(x):x is)→H(x)]	mortal [D)none [-
 16. The connectives A)NAND 17. The symbolic for A)M(x)→H(x 18. 7(p→q)= A) 7pv7q 19. Statement:Navea A) 3-place prediment 	A and v are also B) NOR form of "All men a B)(x)[B) p^ en sits between m licate B)4-plac	called C) XC re mortal" where $M(x) \rightarrow H(x)]$ 7q C) p nadhu and mohan ce predicate C)2	DR M(x):x is a 1 C)(эx)(M(x) →q is a	D) dua men H(x):x is)→H(x)] D) p→7q	mortal [D)none [
 16. The connectives A)NAND 17. The symbolic for A)M(x)→H(x 18. 7(p→q)= A) 7pv7q 19. Statement:Navea A) 3-place prediment 	A and v are also B) NOR form of "All men a B)(x)[B) p^ en sits between m licate B)4-plac	called C) XC are mortal" where $M(x) \rightarrow H(x)]$ 7q C) p adhu and mohan ce predicate C)2	DR M(x):x is a 1 C)(эx)(M(x) →q is a	D) dua men H(x):x is)→H(x)] D) p→7q	mortal [D)none [
16. The connectives A)NAND 17. The symbolic for A)M(x) \rightarrow H(x 18. 7(p \rightarrow q)= A) 7pv7q 19. Statement:Nave A) 3-place pred 20. We symbolize " A) ($\forall x$)	A and v are also B) NOR brm of "All men a brm of "All men a B) $(x)[$ B) p^{x} en sits between m licate B)4-plac for all x" by the s B) $(\exists x) C)[x]$	called C) XC are mortal" where $M(x) \rightarrow H(x)]$ 7q C) p hadhu and mohan ce predicate C)2 symbol is D) \forall	DR M(x):x is a 1 C)(эx)(M(x) →q is a	D) dua men H(x):x is)→H(x)] D) p→7q	mortal [D)none [
16. The connectives A)NAND 17. The symbolic for A)M(x) \rightarrow H(x 18. 7(p \rightarrow q)= A) 7pv7q 19. Statement:Nave A) 3-place pred 20. We symbolize " A) ($\forall x$) 21. In (x)[p(x) \rightarrow Q(x)	A and v are also B) NOR brm of "All men a brm of "All men a B) $(x)[$ B) p^{x} en sits between m licate B)4-plac for all x" by the s B) $(\exists x) C)[x]$	called C) XC are mortal" where $M(x) \rightarrow H(x)]$ 7q C) p hadhu and mohan ce predicate C)2 symbol is D) \forall	PR M(x):x is a 1 C)(эx)(M(x) o→q is a -place predic	D) dua men H(x):x is)→H(x)] D) p→7q	mortal [D)none [[
16. The connectives A)NAND 17. The symbolic for A)M(x) \rightarrow H(x 18. 7(p \rightarrow q)= A) 7pv7q 19. Statement:Naver A) 3-place pred 20. We symbolize " A) ($\forall x$) 21. In (x)[p(x) \rightarrow Q(x) A)p(x)	A and v are also B) NOR brm of "All men a brm of "All men a B) $(x)[$ B) p^{n} en sits between m licate B)4-plac for all x" by the s B) $(\exists x) C)[x]$ x)] the scope of th B)Q(x) $\rightarrow p(x)$	called called	PR M(x):x is a 1 C)(эx)(M(x) o→q is a -place predic	D) dua men H(x):x is $(\rightarrow H(x)]$ D) $p \rightarrow 7q$ ate D)none	mortal [D)none [[
16. The connectives A)NAND 17. The symbolic for A)M(x) \rightarrow H(x 18. 7(p \rightarrow q)= A) 7pv7q 19. Statement:Naver A) 3-place pred 20. We symbolize " A) ($\forall x$) 21. In (x)[p(x) \rightarrow Q(x)	A and v are also B) NOR brm of "All men a brm of "All men a B) $(x)[$ B) p^{x} en sits between m licate B)4-place for all x" by the s B) $(\exists x) C)[x]$ x)] the scope of th B)Q(x) $\rightarrow p(x)$	called called	PR M(x):x is a 1 C)(эx)(M(x) o→q is a -place predic	D) dua men H(x):x is $(\rightarrow H(x)]$ D) $p \rightarrow 7q$ ate D)none	mortal [D)none [[
16. The connectives A)NAND 17. The symbolic for A)M(x) \rightarrow H(x 18. 7(p \rightarrow q)= A) 7pv7q 19. Statement:Naver A) 3-place pred 20. We symbolize " A) ($\forall x$) 21. In (x)[p(x) \rightarrow Q(x A)p(x) 22. (p \rightarrow q) \Leftrightarrow [] A)pvq B)pv7	and v are also B) NOR brm of "All men a brm of "All men a b) B)(x)[B) $p^{A^{2}}$ en sits between m licate B)4-place for all x" by the s B) $(\exists x)$ C)[x] x)] the scope of th B)Q(x) \rightarrow p(x) 7q C)7pvq	called C) XC are mortal" where f $M(x) \rightarrow H(x)$] 7q C) p hadhu and mohan ce predicate C)2 symbol is D) \forall the quantifier is C)p(x) \rightarrow Q(D)none	PR M(x):x is a 1 C)(эx)(M(x) o→q is a -place predic	D) dua men H(x):x is $(\rightarrow H(x)]$ D) $p \rightarrow 7q$ ate D)none	mortal [D)none [[-
16. The connectives A)NAND 17. The symbolic for A)M(x)→H(x 18. 7(p→q)= A) 7pv7q 19. Statement:Navea A) 3-place pred 20. We symbolize " A) $(\forall x)$ 21. In (x)[p(x)→Q(x) A)p(x) 22. (p→q)⇔[]	and v are also B) NOR brm of "All men a brm of "All men a b) B)(x)[B) $p^{A^{2}}$ en sits between m licate B)4-place for all x" by the s B) $(\exists x)$ C)[x] x)] the scope of th B)Q(x) \rightarrow p(x) 7q C)7pvq	called C) XC are mortal" where f $M(x) \rightarrow H(x)$] 7q C) p hadhu and mohan ce predicate C)2 symbol is D) \forall the quantifier is C)p(x) \rightarrow Q(D)none	PR M(x):x is a 1 C)(\ni x)(M(x) $\rightarrow \rightarrow$ q is a -place predic	D) dua men H(x):x is $(\rightarrow H(x)]$ D) $p \rightarrow 7q$ ate D)none	mortal [D)none [[[

			Question I	3ank	201	6
A)7(pvq)	B)7(p^q)	C)p^q	D)pvq			
25. A formula consis	sting of a product of	of elementary s	um is called		[]
A)CNF	B)DNF	C)PDNF	D)PCNF			
26. 7(pvq) <=>					[]
A)7p^7q	B) 7pv7q	C) p^q	D) pvq			
27. A proposition ol	btained by insertin	g the word not i	n the appropriate pla	ace is calle	d []
A) conjunction	n B)disjund	ction C	C) Negation	D)Implic	cation	
28. p,p→q⇒[]						
A)p	B) q	C) p→q	D) 7p			
29. p^(qvr) <=>					[]
A) (pvq) ^(qv	vr) B) (pvq) ^(p ^ r)	C) (p^q) v (p^r)	D) (p^q) v (q	^r)
30. The logical truth	or a universal vali	d statement is c	alled		[]
A)contingency	B)tautolog	gy C)absurdity E)contradic	tion	
31. Implication I_{11} is					[]
A) p,p → q=>q	B) p,q=>j	p^q	C) 7q,p → q=>p	D)nc	one	
32. New proposition	s are obtained by t	he given propos	sition with the help o	of	[]
A)conjunction	B) connective	s C) con	npound proposition	D) 1	none	
33. Equivalence E_{18}	is				[]
A) p,p \rightarrow q=>q	B) p,q=>j	p^q	C) 7q,p → q=>p	D)none	;	
34. R v(p^7p) <=>[]					
A)p	B) 7p	C) R	D) 7R			
35. p^q =>[]						
A)p	B) Q (C) both A and B	D) none			
36. In (x)[$p(x) ^Q(x)$] the scope of the	quantifier is		[]		
A)p(x)	B)Q(x) ^p(x)	C)p(x) ^Q((x) D) Q(x)			
37. Which of the foll	lowing is contrapo	ositive law		[]	
A) $p \rightarrow q \equiv \sim q$	$q \rightarrow p B$) $p \rightarrow q \equiv$	$aa\sim q \rightarrow p$ C) p	$p \equiv p$ D) none	,		
38. Every Rectangle	is a Square				[]
A)T B) F	C) both T & F D) none				
39. A formula consis		-	uctsis called		[]
A)CNF	B)DNF	C)PDNF	D)PCNF			
40. p^7p=					[]

			Ques	tion Bank 201
A) P	B)T	C)F	D)7P	
	SIDDHARTH G	ROUP OF INS	TITUTIONS ::	PUTTUR
	Siddharth Na	agar, Narayanav	anam Road – 51	.7583
SIDDH AFTH INSTITUTEDAS INSTITUTEDAS	QUES	TION BANK (<u>OBJECTIVE)</u>	
bject with Cod	le :DM (15A05302) Course & Bra	anch: B.Tech -	CSE
ear & Sem: II-	B.Tech & I-Sem		Regul	lation:R15
		UNI	TII	
		<u>SET TH</u>	<u>EORY</u>	
Let $A = \{1, 2\}$	2, 3, 4. Let f, g and	h be functions	of A into R. Wh	ich one of them is one-
one?				[]
(A) f(1) =	3, f(2) = 4, f(3) = 5	, f(4) = 3 (B)	g(1) = 2, g(2) =	4, g(3) = 5, g(4) = 3
(C) h(1) =	2, $h(2) = 4$, $h(3) = 3$	(4) = 2 (D)	None of above	
2. Let $A = [-1, 1]$	1]. Which of these f	functions are bij	ective on A?	[]
$(\mathbf{A})f(\mathbf{x})=\mathbf{x}$	² (B) $g(x) = x^{3}$ (C)	$h(x) = x^4 (D) N$	one of above	
3. Let $S = \{$	a, b, c, d}. Which o	of the following	sets of ordered	pairs is a function of S int
S?		C		[]
(A) {(a, b),	(c, a), (b, d), (d, c),	(c, a) (B) { (a, c)	c), (b, c), (d, a),	(c, b), (b, d)
	(b, d), (d, b)} (D) {			
(C) {(a, c),		(0, 0), (c, a), (0, a)	e), a, c)}	
	$\Rightarrow f(x1)=f(x2)$ then			[]
		n the function f		[]
4. If x1=x2A)injectiv		n the function f i C)bijective	s said to be D)none	
 If x1=x2 A)injectiv 	e B)surjective element of y has the	n the function f C)bijective pre-image in x	s said to be D)none	ion of f then f is []
 4. If x1=x2 A)injectiv 5. If every e A)one-one 	e B)surjective element of y has the	n the function f C)bijective pre-image in x C)one	s said to be D)none under the funct	ion of f then f is []
 4. If x1=x2 A)injectiv 5. If every e A)one-one 	e B)surjective element of y has the e B)on-to for 'f' then obviou	n the function f C)bijective pre-image in x C)one	s said to be D)none under the funct -to-one D)none	ion of f then f is [] e []
 4. If x1=x2 A)injectiv 5. If every e A)one-one 6. If f⁻¹exits A) one-one 	e B)surjective element of y has the e B)on-to for 'f' then obviou	n the function f i C)bijective pre-image in x C)one usly f ⁻¹ is also	s said to be D)none under the funct -to-one D)none	ion of f then f is [] e []
 4. If x1=x2 A)injectiv 5. If every e A)one-one 6. If f⁻¹exits A) one-one 	e B)surjective element of y has the e B)on-to for 'f' then obviou e B) on-to C $rac{2}{r+1}$ &g(x)=x-1 then	n the function f i C)bijective pre-image in x C)one usly f ⁻¹ is also	s said to be D)none under the funct -to-one D)none	ion of f then f is [] e [] e []
 4. If x1=x2 A)injectiv 5. If every explicitly 5. If every explicitly A)one-one 6. If f⁻¹exits A) one-one 7. If f(x)=x² A)x²-2x+2 	e B)surjective element of y has the e B)on-to for 'f' then obviou e B) on-to C $rac{2}{r+1}$ &g(x)=x-1 then	the function f is C)bijective c pre-image in x C)one usly f ⁻¹ is also c)one-one & on-the fog(x)= C)x ² -2x	s said to be D)none under the functi to-to-one D)none	ion of f then f is [] e [] e []
 4. If x1=x2 A)injectiv 5. If every explicitly 5. If every explicitly A)one-one 6. If f⁻¹exits A) one-one 7. If f(x)=x² A)x²-2x+2 	e B)surjective element of y has the e B)on-to for 'f' then obviou e B) on-to C R+1 & g(x)=x-1 then 2 B) x^2-2x-2 ng $I_x::x \rightarrow x$ is called	the function f is C)bijective pre-image in x C)one usly f ⁻¹ is also c)one-one & on-the fog(x)= C)x ² -2x an	s said to be D)none under the funct to-to-one D)none to D)none D)none	ion of f then f is [] e [] e [] e [] e
 4. If x1=x2 A)injectiv 5. If every e A)one-one 6. If f⁻¹exits A) one-one 7. If f(x)=x² A)x²-2x+2 8. A mappin A)Reflexit 	e B)surjective element of y has the e B)on-to for 'f' then obviou e B) on-to C R+1 & g(x)=x-1 then 2 B) x^2-2x-2 ng $I_x::x \rightarrow x$ is called	the function f is C)bijective pre-image in x C)one asly f ⁻¹ is also c)one-one & on-the fog(x)= C)x ² -2x an C)inverse	s said to be D)none under the funct to-to-one D)none to D)none D)none	ion of f then f is [] e [] e [] e [] e

		Question Ban	k 201	6
10. Associative	law is		[1
a) A U B = B U		c) (A U B) U C = A U (B U C)d) B =		1
11. $A \cap \Phi =$	5 II 0) II II		[]
A) ΦB) A	c) A'	d)2A	L	L
12. $A \cap A =$	•) 11	-)	[]
А) Ф	B) Ac) A'	d) 2A	L	L
13. A U Φ =	, ,		[]
A) Φ	B) A c) A'	d) 2A	L	
14. A U A =	, ,		[]
A) Φ	B) A c) A'	d) 2A	L	-
15. A U B =			[]
A) $A \cap B$	B) A U A	c) B U Ad) B U B	L	
16. A relation is	reflexive then there mu		[]
A) NodeB) loop	c) verte	x d) edge	-	-
17. A relation w	hich satisfies reflexive,	symmetric, & transitive is called as –	[]
A) Equivalence	B) compatibilityc) p	-		
18. If A={1,2,3	$(5,6)$ and B={ 5,6,7} th	en(AUB)=	[]
A) {1,2,3,5,6}	B) { 5,6,7 } C) {	[1,2,3,5,6,7] D) {1,2,3,4,5,6,7}		
19. If A={4,5,7	$(7,8,10)$ and $B = \{4,5,9\}$ the set of the	nen (A-B)=	[]
A) {4,5,7,8,10]	B) {4,5,9}	C) {7, 8, 10 } D) { 7,8,9,`10}		
20. The number	of elements of set is cal	lled	[]
A) Cardinality	B) compatability	C) poset D) none		
21. If A={1,2,3	B} and B= $\{5,6,7\}$ then	B A =	[]
A)B	B) A	C) A—B D) A \cap B		
22. If $AX(B \cap C)$)=		[]
A) AXBXC	B) (AXB)U (AX	(C) C) (AXB)∩ (AXC) D)NONE		
23. If n(A)=20,1	$n(B)=30$ and $n(A\cap B)=5$	then n(AUB)=	[]
A) 40	B) 55	C) 45 D) 50		
24. If A-(A∩B)=	=		[]
A) A –B	B) A+ B C) A \cap B	D) AUA	-	-
	(AUC) and (A \cap B)= (A \cap		[]
A) $\mathbf{B} = \mathbf{C}$		D) A=B=C	L	
	,8,10,12} then the set bu	,	[]
		7 } B){ $2X/X$ is natural number < 9 }	L	
		$5 $ D){ 2X/ X is natural number < 17 }		
		ecified with bit string of 1010100 is	[]
(, .,-	· · · · , · · · · · · · · · · · · · · ·	0	L	-

A) {1,2,3,4,5,6,7} B) {1,3,,5,} C) {1,2,3,4,} D) {1,2,3}		
28. If U={a,b,c,d,e,f,g,h} find the set specified with bit string of the set A = { a,d,f,h } is	ſ	1
A) 10010111 B) 10010101 C) 10101010 D) 10001010	L	I
29. A Relation R in a set 'X' is if for every x,y,z \in X and xRy \cap yRz then xRz	[]
A) Antisymmetric B) TransitiveC) symmetric D) none		
30. Given $f(x) = x^3$ and $g(x) = x + 2$, for $x \in R$ then $f \circ g$ is []	
A) $x + 2$ B) $x^3 + 2$ C) $(x + 2)^3$ D) $x - 2$		
31. Let $f: R \to R$ be given by $f(x) = x^3 - 2$. Find f^{-1} []	
A) $(x+2)^{\frac{1}{3}}$ B) $(x-2)^{\frac{1}{3}}$ C) $x^{3}+2$ D) $x^{3}-3$		
32. The example for singleton set is	[]
A) $\{1\}$ B) $\{a\}$ C) $\{2\}$ D)All the above		
33. If the set contains n elements, then the number of subsets is	[]
A) n B) $n+1$ C) 2^n D) 2^{n+1}		
34. If $A = \{1, 3, 4\}$, $B = \{1, 2, 3, 4, 5\}$ then	[]
A) $A = B$ B) $B \subseteq A$ C) $A \subseteq B$ D)None		
35. The set of binary digits in tabular form is	[]
A) $\{1, 1\}$ B) $\{0, 1\}$ C) $\{0, 0\}$ D) $\{0, 1, 0\}$		
36. If $B = \{x \mid x \text{ is a multiple of 4, } x \text{ is odd}\}$, the set B is	[]
A) Null B) Power set C) Empty set D) Index set		
37. If A and B are disjoint sets then $A \cap B =$ []		
38. $AU(B \cap C) = (AUB) \cap (AUC)$ is called	[]
A) Commutative law B) Associative law C) Distributive law D) Demorgan's la	aw	
39. The family of subsets of any set is called as	[]
A) Proper subset B) Subset C) Set of sets D) Power set		
40. $(A \cap B)' =$	[]
$\mathbf{A})\mathbf{A}\cap \mathbf{B}\mathbf{B})\mathbf{A}'\cap \mathbf{B}' \mathbf{C})\mathbf{A}' \cup \mathbf{B}' \qquad \mathbf{D})\mathbf{A} \cup \mathbf{B}$		